Home
Class 12
MATHS
int(1//e)^(e) (dx)/(x(log x)^(1//3))...

`int_(1//e)^(e) (dx)/(x(log x)^(1//3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{e}}^{e} \frac{dx}{x (\log x)^{\frac{1}{3}}} \] we will follow these steps: ### Step 1: Change of Variables Let \( t = \log x \). Then, we have: \[ dx = e^t dt \] Also, since \( x = e^t \), we can rewrite \( \frac{dx}{x} \) as: \[ \frac{dx}{x} = \frac{e^t dt}{e^t} = dt \] ### Step 2: Change the Limits of Integration When \( x = \frac{1}{e} \): \[ t = \log\left(\frac{1}{e}\right) = -1 \] When \( x = e \): \[ t = \log(e) = 1 \] Thus, the limits of integration change from \( x = \frac{1}{e} \) to \( x = e \) into \( t = -1 \) to \( t = 1 \). ### Step 3: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{-1}^{1} \frac{dt}{t^{\frac{1}{3}}} \] ### Step 4: Simplify the Integral The integral can be expressed as: \[ I = \int_{-1}^{1} t^{-\frac{1}{3}} dt \] ### Step 5: Evaluate the Integral This integral can be computed using the formula for the integral of a power function: \[ \int t^{n} dt = \frac{t^{n+1}}{n+1} + C \quad \text{for } n \neq -1 \] Here, \( n = -\frac{1}{3} \): \[ I = \left[ \frac{t^{\frac{2}{3}}}{\frac{2}{3}} \right]_{-1}^{1} = \left[ \frac{3}{2} t^{\frac{2}{3}} \right]_{-1}^{1} \] ### Step 6: Calculate the Values at the Limits Now we evaluate this from \( -1 \) to \( 1 \): \[ I = \frac{3}{2} \left( 1^{\frac{2}{3}} - (-1)^{\frac{2}{3}} \right) \] Since \( (-1)^{\frac{2}{3}} = 1 \): \[ I = \frac{3}{2} \left( 1 - 1 \right) = \frac{3}{2} \cdot 0 = 0 \] ### Final Result Thus, the value of the integral is: \[ I = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))

int_(1)^(e) (e^(x) (1+xlog x))/(x) dx

int_(0)^(1) (dx)/(e^(x)+e^(-x))

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

int_0^1(e^x dx)/(1+e^x)

The value of integral int_(1)^(e) (log x)^(3)dx , is

If int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k , then find the value of k.

Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) = f(1) = 1 and int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2) , then the value of int_(1)^(e ) f''(x)ln xdx equals :