Home
Class 12
MATHS
int(1)^(2) (dx)/(x(1+log x)^(2))...

`int_(1)^(2) (dx)/(x(1+log x)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{1}^{2} \frac{dx}{x(1 + \log x)^{2}}, \] we will follow these steps: ### Step 1: Substitution Let \( t = 1 + \log x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} dx \implies dx = x dt. \] Since \( x = e^{t-1} \) (from \( t = 1 + \log x \)), we can express \( dx \) in terms of \( t \): \[ dx = e^{t-1} dt. \] ### Step 2: Change of Limits Next, we need to change the limits of integration. - When \( x = 1 \): \[ t = 1 + \log 1 = 1 + 0 = 1. \] - When \( x = 2 \): \[ t = 1 + \log 2. \] Thus, the new limits are from \( t = 1 \) to \( t = 1 + \log 2 \). ### Step 3: Rewrite the Integral Now we can rewrite the integral: \[ \int_{1}^{2} \frac{dx}{x(1 + \log x)^{2}} = \int_{1}^{1 + \log 2} \frac{1}{t^{2}} dt. \] ### Step 4: Evaluate the Integral The integral \( \int \frac{1}{t^{2}} dt \) is: \[ \int \frac{1}{t^{2}} dt = -\frac{1}{t}. \] Now we evaluate this from \( t = 1 \) to \( t = 1 + \log 2 \): \[ \left[-\frac{1}{t}\right]_{1}^{1 + \log 2} = -\frac{1}{1 + \log 2} + \frac{1}{1} = 1 - \frac{1}{1 + \log 2}. \] ### Step 5: Simplify the Result Now we simplify: \[ 1 - \frac{1}{1 + \log 2} = \frac{(1 + \log 2) - 1}{1 + \log 2} = \frac{\log 2}{1 + \log 2}. \] Thus, the value of the definite integral is: \[ \int_{1}^{2} \frac{dx}{x(1 + \log x)^{2}} = \frac{\log 2}{1 + \log 2}. \] ### Final Answer \[ \int_{1}^{2} \frac{dx}{x(1 + \log x)^{2}} = \frac{\log 2}{1 + \log 2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

solve int_(1)^(2)(log x)/(x^(2))dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

(i) (log x. sin[1+(log x)^(2)])/(x) dx (ii) int(dx)/(x(1+log)^(n))

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=