Home
Class 12
MATHS
int((x sin^(-1)x)/(sqrt(1-x)^(2)))dx...

`int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx, \] we will use the substitution method and integration by parts. ### Step 1: Rewrite the Integral We start by rewriting the integral in a clearer form: \[ I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx. \] ### Step 2: Substitution Let us use the substitution \( t = \sin^{-1} x \). Then, we differentiate: \[ dt = \frac{1}{\sqrt{1 - x^2}} \, dx \quad \Rightarrow \quad dx = \sqrt{1 - x^2} \, dt. \] Also, since \( x = \sin t \), we can substitute \( x \) in terms of \( t \): \[ I = \int \sin t \cdot t \, dt. \] ### Step 3: Integration by Parts Now we will apply integration by parts. We choose: - \( u = t \) (hence \( du = dt \)) - \( dv = \sin t \, dt \) (hence \( v = -\cos t \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ I = t (-\cos t) - \int (-\cos t) \, dt. \] This simplifies to: \[ I = -t \cos t + \int \cos t \, dt. \] ### Step 4: Integrate \( \cos t \) The integral of \( \cos t \) is: \[ \int \cos t \, dt = \sin t. \] Thus, we have: \[ I = -t \cos t + \sin t + C, \] where \( C \) is the constant of integration. ### Step 5: Substitute Back Now we substitute back \( t = \sin^{-1} x \) and \( \cos t = \sqrt{1 - x^2} \): \[ I = -\sin^{-1} x \cdot \sqrt{1 - x^2} + \sin(\sin^{-1} x) + C. \] Since \( \sin(\sin^{-1} x) = x \), we can write: \[ I = -\sin^{-1} x \cdot \sqrt{1 - x^2} + x + C. \] ### Final Answer Thus, the final answer is: \[ I = x - \sin^{-1} x \cdot \sqrt{1 - x^2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

Evaluate: int(sin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate: (i) int((sin^(-1)x)^3)/(sqrt(1-x^2))\ dx (ii) int(sin(2+3logx)/x\ dx

Evaluate: int(x^3sin^(-1)x^2)/(sqrt(1-x^4))\ dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int_-1^1 (x.sin^-1x)/(sqrt(1-x^2)) dx =2

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx