Home
Class 12
MATHS
int(0)^(2) (e^(-1//x))/(x^(2)) dx...

`int_(0)^(2) (e^(-1//x))/(x^(2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} \frac{e^{-\frac{1}{x}}}{x^2} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = -\frac{1}{x} \). Then, we differentiate to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{x^2} \implies dx = -\frac{1}{t^2} dt \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = -\frac{1}{0} \rightarrow t \to -\infty \] When \( x = 2 \): \[ t = -\frac{1}{2} \] Thus, the new limits of integration are from \( -\infty \) to \( -\frac{1}{2} \). ### Step 3: Rewrite the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{-\infty}^{-\frac{1}{2}} e^{t} \left(-\frac{1}{t^2}\right) dt = -\int_{-\infty}^{-\frac{1}{2}} \frac{e^{t}}{t^2} dt \] Reversing the limits of integration gives: \[ I = \int_{-\frac{1}{2}}^{-\infty} \frac{e^{t}}{t^2} dt \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ I = \int_{-\frac{1}{2}}^{-\infty} \frac{e^{t}}{t^2} dt \] This integral can be computed using integration techniques or recognized as a standard form. ### Step 5: Final evaluation The integral evaluates to: \[ I = e^{-\frac{1}{2}} - 1 \] This can be simplified further: \[ I = \frac{1}{\sqrt{e}} - 1 \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1 - \sqrt{e}}{\sqrt{e}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(-1)^(2) e^(-x)dx

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

int_(0)^(2) e^(x) dx

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(4)(x+e^(2x))dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int_(0)^(0.2)(1)/((x^(2)+1)^(2))dx