Home
Class 12
MATHS
int(0)^(pi//2) e^(x) (sin x + cos x) dx...

`int_(0)^(pi//2) e^(x) (sin x + cos x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} e^{x} (\sin x + \cos x) \, dx, \] we can use the integration formula: \[ \int e^{x} (f(x) + f'(x)) \, dx = e^{x} f(x) + C, \] where \( f(x) \) is a function and \( f'(x) \) is its derivative. ### Step 1: Identify \( f(x) \) and \( f'(x) \) In our case, we can let: - \( f(x) = \sin x \) - \( f'(x) = \cos x \) Thus, we can rewrite our integral as: \[ I = \int_{0}^{\frac{\pi}{2}} e^{x} (f(x) + f'(x)) \, dx = \int_{0}^{\frac{\pi}{2}} e^{x} (\sin x + \cos x) \, dx. \] ### Step 2: Apply the formula According to the formula, we have: \[ \int e^{x} (\sin x + \cos x) \, dx = e^{x} \sin x + C. \] ### Step 3: Evaluate the definite integral Now, we need to evaluate this from \( 0 \) to \( \frac{\pi}{2} \): \[ I = \left[ e^{x} \sin x \right]_{0}^{\frac{\pi}{2}}. \] Calculating the upper limit: \[ \text{At } x = \frac{\pi}{2}: \quad e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} \cdot 1 = e^{\frac{\pi}{2}}. \] Calculating the lower limit: \[ \text{At } x = 0: \quad e^{0} \sin(0) = 1 \cdot 0 = 0. \] ### Step 4: Combine the results Thus, we have: \[ I = e^{\frac{\pi}{2}} - 0 = e^{\frac{\pi}{2}}. \] ### Final Answer \[ I = e^{\frac{\pi}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x^(2) cos x dx

solve int_(0)^( pi/4)e^(x)(sin x+cos x)dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

int_(0)^(pi//2) x sinx cos x dx=?

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….