Home
Class 12
MATHS
int(0)^(pi) x sin^(2) x dx...

`int_(0)^(pi) x sin^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin^2 x \) We can use the identity for \( \sin^2 x \): \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, we rewrite the integral: \[ \int_{0}^{\pi} x \sin^2 x \, dx = \int_{0}^{\pi} x \left(\frac{1 - \cos(2x)}{2}\right) \, dx \] This simplifies to: \[ \frac{1}{2} \int_{0}^{\pi} x \, dx - \frac{1}{2} \int_{0}^{\pi} x \cos(2x) \, dx \] ### Step 2: Calculate the first integral Now we calculate the first integral: \[ \frac{1}{2} \int_{0}^{\pi} x \, dx \] The integral of \( x \) is: \[ \int x \, dx = \frac{x^2}{2} \] Evaluating from 0 to \( \pi \): \[ \frac{1}{2} \left[ \frac{x^2}{2} \right]_{0}^{\pi} = \frac{1}{2} \left[ \frac{\pi^2}{2} - 0 \right] = \frac{\pi^2}{4} \] ### Step 3: Calculate the second integral using integration by parts Next, we need to evaluate: \[ -\frac{1}{2} \int_{0}^{\pi} x \cos(2x) \, dx \] We will use integration by parts, where we let: - \( u = x \) (thus \( du = dx \)) - \( dv = \cos(2x) \, dx \) (thus \( v = \frac{1}{2} \sin(2x) \)) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int x \cos(2x) \, dx = x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \] The integral of \( \sin(2x) \) is: \[ -\frac{1}{2} \cos(2x) \] Thus: \[ \int x \cos(2x) \, dx = \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \] Now we evaluate this from 0 to \( \pi \): \[ \left[ \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \right]_{0}^{\pi} \] At \( x = \pi \): \[ \frac{\pi}{2} \sin(2\pi) + \frac{1}{4} \cos(2\pi) = \frac{\pi}{2} \cdot 0 + \frac{1}{4} \cdot 1 = \frac{1}{4} \] At \( x = 0 \): \[ \frac{0}{2} \sin(0) + \frac{1}{4} \cos(0) = 0 + \frac{1}{4} = \frac{1}{4} \] Thus: \[ \left[ \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \right]_{0}^{\pi} = \frac{1}{4} - \frac{1}{4} = 0 \] ### Step 4: Combine results Putting it all together: \[ \int_{0}^{\pi} x \sin^2 x \, dx = \frac{\pi^2}{4} - \frac{1}{2} \cdot 0 = \frac{\pi^2}{4} \] ### Final Answer The final result is: \[ \int_{0}^{\pi} x \sin^2 x \, dx = \frac{\pi^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//4) sin ^(2) x dx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

int_(0)^(pi//2) sin ^(4) x dx

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

int_(0)^(pi) x sin x cos^(2)x\ dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

If int_(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int_(0)^(pi//2) sin^(n)x" dx" , then lambda=