Home
Class 12
MATHS
Evaluate : (i) underset(0)overset(1)in...

Evaluate :
(i) `underset(0)overset(1)intsin^(-1)xdx` , (ii) `underset(1)overset(2)int(lnx)/(x^(2))dx`, (iii) `underset(0)overset(1)intx^(2)sin^(-1)xdx`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2) (1-log_(e)2)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n) (a) underset(0)overset(1)intx^(n-1)(1+x)^(n)dx (b) underset(1)overset(2)intx^(n)(x-1)^(n-1)dx (c) underset(1)overset(2)int(1+x)^(n)dx (d) underset(0)overset(1)int(1-x)^(n)x^(n-1)dx

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

The value of underset(0)overset(pi//2)int logtan xdx , is

The integral underset(1)overset(5)int x^(2)dx is equal to

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

If n and l are respectively the principal and azimuthal quantum numbers , then the expression for calculating the total number of electrons in any energy level is : (a) underset(l=0)overset(l=n)sum2(2l+1) (b) underset(l=1)overset(l=n)sum2(2l+1) (c) underset(l=0)overset(l=n)sum2(2l+1) (d) underset(l=0)overset(l=n-1)sum2(2l+1)

Let g(t) = underset(x_(1))overset(x_(2))intf(t,x) dx . Then g'(t) = underset(x_(1))overset(x_(2))int(del)/(delt) (f(t,x))dx , Consider f(x) = underset(0)overset(pi)int (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

The value of integral underset(2)overset(4)int(dx)/(x) is :-

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

Consider the integrals I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx and I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx . The greatest of these integrals, is