Home
Class 12
MATHS
int(0)^(pi//4) e^(x) (tan x+ sec^(2)x) d...

`int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{0}^{\frac{\pi}{4}} e^{x} \left( \tan x + \sec^{2} x \right) dx\), we can use the integration technique that involves recognizing the derivative of a function within the integrand. ### Step-by-Step Solution: 1. **Identify the Function and its Derivative**: We notice that the integrand consists of \(e^{x}\) multiplied by \(\tan x + \sec^{2} x\). We know that the derivative of \(\tan x\) is \(\sec^{2} x\). Therefore, we can express the integrand as: \[ \tan x + \sec^{2} x = \frac{d}{dx}(\tan x) + \tan x \] 2. **Recognize the Integration Formula**: There is a useful integration formula: \[ \int e^{x} (f(x) + f'(x)) \, dx = e^{x} f(x) + C \] Here, \(f(x) = \tan x\) and \(f'(x) = \sec^{2} x\). 3. **Apply the Formula**: We can rewrite the integral: \[ \int_{0}^{\frac{\pi}{4}} e^{x} \left( \tan x + \sec^{2} x \right) dx = \int_{0}^{\frac{\pi}{4}} e^{x} \frac{d}{dx}(\tan x) + e^{x} \tan x \, dx \] This simplifies to: \[ \int_{0}^{\frac{\pi}{4}} e^{x} \frac{d}{dx}(\tan x) \, dx = e^{x} \tan x \bigg|_{0}^{\frac{\pi}{4}} \] 4. **Evaluate the Limits**: Now we need to evaluate the expression \(e^{x} \tan x\) at the limits \(0\) and \(\frac{\pi}{4}\): \[ e^{\frac{\pi}{4}} \tan\left(\frac{\pi}{4}\right) - e^{0} \tan(0) \] We know that \(\tan\left(\frac{\pi}{4}\right) = 1\) and \(\tan(0) = 0\): \[ = e^{\frac{\pi}{4}} \cdot 1 - e^{0} \cdot 0 = e^{\frac{\pi}{4}} - 0 = e^{\frac{\pi}{4}} \] 5. **Final Answer**: Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} e^{x} \left( \tan x + \sec^{2} x \right) dx = e^{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_(0)^(4)(x+e^(2x))dx

Evaluate the following : int_(0)^(pi//4) " tan x dx"

int_(0)^(pi//4)e^( sinx)(((x cos^(3)x- sinx))/( cos^(2)x))dx

int_(0)^( pi/4)x*sec^(2)xdx=

int_(0)^( pi/4)x*sec^(2)xdx=

int e^x sec e^x dx

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is