Home
Class 12
MATHS
int(0)^(1) x sqrt((1-x^(2))/(1+x^(2)))dx...

`int_(0)^(1) x sqrt((1-x^(2))/(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x \sqrt{\frac{1-x^2}{1+x^2}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( x^2 = t \). Then, we have: \[ dx = \frac{1}{2\sqrt{t}} \, dt \] When \( x = 0 \), \( t = 0 \) and when \( x = 1 \), \( t = 1 \). Thus, the integral becomes: \[ I = \int_{0}^{1} \sqrt{t} \sqrt{\frac{1-t}{1+t}} \cdot \frac{1}{2\sqrt{t}} \, dt = \frac{1}{2} \int_{0}^{1} \sqrt{\frac{1-t}{1+t}} \, dt \] ### Step 2: Rationalizing the Integral Now, we can rewrite the integral: \[ I = \frac{1}{2} \int_{0}^{1} \frac{\sqrt{1-t}}{\sqrt{1+t}} \, dt \] To simplify this, we can rationalize the denominator: \[ \sqrt{1+t} = \sqrt{(1-t)(1+t)} \Rightarrow \sqrt{1-t} \cdot \sqrt{1+t} \] Thus, we have: \[ I = \frac{1}{2} \int_{0}^{1} \frac{(1-t)}{\sqrt{1-t^2}} \, dt \] ### Step 3: Splitting the Integral We can separate the integral: \[ I = \frac{1}{2} \left( \int_{0}^{1} \frac{1}{\sqrt{1-t^2}} \, dt - \int_{0}^{1} \frac{t}{\sqrt{1-t^2}} \, dt \right) \] ### Step 4: Evaluating the First Integral The first integral \( \int_{0}^{1} \frac{1}{\sqrt{1-t^2}} \, dt \) is known: \[ \int_{0}^{1} \frac{1}{\sqrt{1-t^2}} \, dt = \frac{\pi}{2} \] ### Step 5: Evaluating the Second Integral For the second integral, we can use the substitution \( t = \sin(\theta) \), which gives \( dt = \cos(\theta) \, d\theta \): \[ \int_{0}^{1} \frac{t}{\sqrt{1-t^2}} \, dt = \int_{0}^{\frac{\pi}{2}} \sin(\theta) \, d\theta = 1 \] ### Step 6: Combining Results Now we can combine the results: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 1 \right) = \frac{\pi}{4} - \frac{1}{2} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi}{4} - \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7n|32 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

int_0^1 x^5sqrt((1+x^2)/(1-x^2))dx

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int_(0)^(1) (1)/(1+x+2x^(2))dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is