Home
Class 12
MATHS
Prove that : int(0)^(pi) (x sin x)/(1+co...

Prove that : `int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi) [2sin x]dx=

Prove that : int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2