Home
Class 12
MATHS
Evaluate : int(0)^(1) (1-x)^(3//2) dx...

Evaluate : `int_(0)^(1) (1-x)^(3//2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} (1-x)^{\frac{3}{2}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 - x \). Then, differentiating both sides gives us: \[ dx = -dt \] ### Step 2: Change the limits of integration When \( x = 0 \), \( t = 1 - 0 = 1 \). When \( x = 1 \), \( t = 1 - 1 = 0 \). Thus, the limits change from \( x: 0 \to 1 \) to \( t: 1 \to 0 \). ### Step 3: Rewrite the integral Substituting \( t \) into the integral, we have: \[ \int_{0}^{1} (1-x)^{\frac{3}{2}} \, dx = \int_{1}^{0} t^{\frac{3}{2}} (-dt) = -\int_{1}^{0} t^{\frac{3}{2}} \, dt \] This can be rewritten as: \[ \int_{0}^{1} t^{\frac{3}{2}} \, dt \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ \int t^{\frac{3}{2}} \, dt = \frac{t^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{t^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} t^{\frac{5}{2}} \] ### Step 5: Apply the limits Now we apply the limits from 0 to 1: \[ \left[ \frac{2}{5} t^{\frac{5}{2}} \right]_{0}^{1} = \frac{2}{5} (1^{\frac{5}{2}}) - \frac{2}{5} (0^{\frac{5}{2}}) = \frac{2}{5} - 0 = \frac{2}{5} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} (1-x)^{\frac{3}{2}} \, dx = \frac{2}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate: int_(0)^1(dx)/(1+x^2)

Evaluate : int_0^1 1/(1+x^2)dx

Evaluate: int_0^1 1/(2x-3)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx