Home
Class 12
MATHS
Evaluate : int(0)^(1)log ((1)/(x) -1) dx...

Evaluate : `int_(0)^(1)log ((1)/(x) -1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{1} \log\left(\frac{1}{x} - 1\right) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_{0}^{1} \log\left(\frac{1}{x} - 1\right) \, dx \] We can simplify the logarithm: \[ \log\left(\frac{1}{x} - 1\right) = \log\left(\frac{1 - x}{x}\right) = \log(1 - x) - \log(x) \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \left(\log(1 - x) - \log(x)\right) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ I = \int_{0}^{1} \log(1 - x) \, dx - \int_{0}^{1} \log(x) \, dx \] ### Step 3: Evaluate the first integral The integral \( \int_{0}^{1} \log(1 - x) \, dx \) can be evaluated using integration by parts. Let: - \( u = \log(1 - x) \) and \( dv = dx \) Then, \( du = -\frac{1}{1 - x} \, dx \) and \( v = x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int_{0}^{1} \log(1 - x) \, dx = \left[ x \log(1 - x) \right]_{0}^{1} - \int_{0}^{1} \frac{x}{1 - x} \, dx \] The boundary term evaluates to \( 0 \) since \( \log(1 - x) \) approaches \( 0 \) as \( x \) approaches \( 1 \) and is \( 0 \) at \( x = 0 \). Thus, we need to evaluate: \[ \int_{0}^{1} \frac{x}{1 - x} \, dx \] ### Step 4: Evaluate the second integral The integral \( \int_{0}^{1} \log(x) \, dx \) can also be evaluated using integration by parts: Let: - \( u = \log(x) \) and \( dv = dx \) Then, \( du = \frac{1}{x} \, dx \) and \( v = x \). Using integration by parts: \[ \int_{0}^{1} \log(x) \, dx = \left[ x \log(x) \right]_{0}^{1} - \int_{0}^{1} 1 \, dx \] The boundary term evaluates to \( 0 \) (as \( x \log(x) \) approaches \( 0 \) as \( x \) approaches \( 0 \) and is \( 0 \) at \( x = 1 \)). Thus: \[ \int_{0}^{1} \log(x) \, dx = 0 - 1 = -1 \] ### Step 5: Combine results Now we combine our results: \[ I = \int_{0}^{1} \log(1 - x) \, dx - (-1) \] We know from properties of definite integrals that: \[ \int_{0}^{1} \log(1 - x) \, dx = -1 \] Thus: \[ I = -1 + 1 = 0 \] ### Final Answer The value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : int_(0)^(9) (1)/(1+sqrt(x))dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2