Home
Class 12
MATHS
Evaluate : int0^1x(1-x)^5dx...

Evaluate : `int_0^1x(1-x)^5dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_0^1 x(1-x)^5 \, dx, \] we can use a substitution method. Let's go through the solution step by step. ### Step 1: Substitution Let \( t = 1 - x \). Then, we have: \[ dx = -dt. \] ### Step 2: Change the Limits When \( x = 0 \), \( t = 1 - 0 = 1 \). When \( x = 1 \), \( t = 1 - 1 = 0 \). So, the limits of integration change from \( x: 0 \to 1 \) to \( t: 1 \to 0 \). ### Step 3: Rewrite the Integral Now, substituting \( x = 1 - t \) into the integral, we get: \[ \int_1^0 (1 - t) t^5 (-dt) = \int_0^1 (1 - t) t^5 \, dt. \] ### Step 4: Expand the Integral Now, we can expand the integrand: \[ \int_0^1 (1 - t) t^5 \, dt = \int_0^1 (t^5 - t^6) \, dt. \] ### Step 5: Integrate Term by Term Now, we can integrate term by term: \[ \int_0^1 t^5 \, dt - \int_0^1 t^6 \, dt. \] Calculating these integrals: \[ \int_0^1 t^5 \, dt = \left[ \frac{t^6}{6} \right]_0^1 = \frac{1}{6}, \] \[ \int_0^1 t^6 \, dt = \left[ \frac{t^7}{7} \right]_0^1 = \frac{1}{7}. \] ### Step 6: Combine the Results Now, substituting back into our expression: \[ \int_0^1 (1 - t) t^5 \, dt = \frac{1}{6} - \frac{1}{7}. \] ### Step 7: Find a Common Denominator To combine these fractions, we find a common denominator, which is 42: \[ \frac{1}{6} = \frac{7}{42}, \quad \frac{1}{7} = \frac{6}{42}. \] Thus, \[ \frac{1}{6} - \frac{1}{7} = \frac{7}{42} - \frac{6}{42} = \frac{1}{42}. \] ### Final Answer Therefore, the value of the integral is \[ \int_0^1 x(1-x)^5 \, dx = \frac{1}{42}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1x(1-x)^n dx

int_0^1 x(1-x)^(5/2) dx

Evaluate : int_0^1xlog(1+2x)dx

Evaluate : int_0^1xlog(1+2x)dx

Evaluate : int_0^1xlog(1+2x)dx

Evaluate : int_0^1sqrt(x(1-x))dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate : int_0^1 1/(1+x^2)dx

Find the value of int_0^1x(1-x)dx

Evaluate: int_0^1(3x^2+5x)dx