Home
Class 12
MATHS
Evaluate : int(0)^(4) x(4-x)^(3//2)dx...

Evaluate : `int_(0)^(4) x(4-x)^(3//2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{4} x (4 - x)^{\frac{3}{2}} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{4} x (4 - x)^{\frac{3}{2}} \, dx \] ### Step 2: Use substitution Let \( t = 4 - x \). Then, differentiating both sides gives: \[ dx = -dt \] We also need to change the limits of integration. When \( x = 0 \), \( t = 4 \) and when \( x = 4 \), \( t = 0 \). Thus, the integral becomes: \[ I = \int_{4}^{0} (4 - t) t^{\frac{3}{2}} (-dt) = \int_{0}^{4} (4 - t) t^{\frac{3}{2}} \, dt \] ### Step 3: Expand the integrand Now, we expand the integrand: \[ I = \int_{0}^{4} (4t^{\frac{3}{2}} - t^{\frac{5}{2}}) \, dt \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{4} 4t^{\frac{3}{2}} \, dt - \int_{0}^{4} t^{\frac{5}{2}} \, dt \] ### Step 5: Integrate each term Now we will integrate each term separately. 1. For the first term: \[ \int t^{\frac{3}{2}} \, dt = \frac{t^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \frac{t^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2}{5} t^{\frac{5}{2}} \] Thus, \[ \int_{0}^{4} 4t^{\frac{3}{2}} \, dt = 4 \cdot \left[ \frac{2}{5} t^{\frac{5}{2}} \right]_{0}^{4} = \frac{8}{5} [4^{\frac{5}{2}} - 0] = \frac{8}{5} \cdot 32 = \frac{256}{5} \] 2. For the second term: \[ \int t^{\frac{5}{2}} \, dt = \frac{t^{\frac{5}{2} + 1}}{\frac{5}{2} + 1} = \frac{t^{\frac{7}{2}}}{\frac{7}{2}} = \frac{2}{7} t^{\frac{7}{2}} \] Thus, \[ \int_{0}^{4} t^{\frac{5}{2}} \, dt = \left[ \frac{2}{7} t^{\frac{7}{2}} \right]_{0}^{4} = \frac{2}{7} [4^{\frac{7}{2}} - 0] = \frac{2}{7} \cdot 128 = \frac{256}{7} \] ### Step 6: Combine the results Now substituting back into our expression for \( I \): \[ I = \frac{256}{5} - \frac{256}{7} \] ### Step 7: Find a common denominator The common denominator of 5 and 7 is 35. Thus, we rewrite the fractions: \[ I = \frac{256 \cdot 7}{35} - \frac{256 \cdot 5}{35} = \frac{1792 - 1280}{35} = \frac{512}{35} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{512}{35}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (x)/(1-x)^(3//4)dx=

Evaluate : int_(0)^(4) (dx)/(sqrt(x^(2) +2x +3))

Evaluate int_(0)^(3)(x^(2)-4)dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

int_(0)^(2) (1)/(4+x+x^(2))dx

int_(2)^(0) x(2-x)^4 dx

int_(0)^(4)({[x]})dx

Evaluate: int_0^a(x^4)/(sqrt(a^2-x^2))dx

NAGEEN PRAKASHAN ENGLISH-INTEGRATION-Exercise 7p
  1. Evaluate : int(0)^(1)log ((1)/(x) -1) dx

    Text Solution

    |

  2. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  3. Evaluate : int(0)^(4) x(4-x)^(3//2)dx

    Text Solution

    |

  4. Prove that :(i) int(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int(-pi)^(...

    Text Solution

    |

  5. Evaluate : int0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)|sinx|dx

    Text Solution

    |

  9. Evaluate :int(0)^(8) |x-5|dx

    Text Solution

    |

  10. Evaluate :int(-pi//4)^(pi//4) |sin x|dx

    Text Solution

    |

  11. "If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then eva...

    Text Solution

    |

  12. if f(x) ={[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},then evaluate ...

    Text Solution

    |

  13. Prove that :int(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

    Text Solution

    |

  15. Prove that :int(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. Evaluate: int0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Prove that :int(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log(e) 2

    Text Solution

    |

  20. Evaluate : int(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

    Text Solution

    |