Home
Class 12
MATHS
Evaluate :int(0)^(8) |x-5|dx...

Evaluate :`int_(0)^(8) |x-5|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{8} |x - 5| \, dx \), we will follow these steps: ### Step 1: Identify the points where the expression inside the absolute value changes sign. The expression \( |x - 5| \) changes sign at \( x = 5 \). Therefore, we need to split the integral at this point. ### Step 2: Split the integral into two parts. We can break the integral into two parts: \[ \int_{0}^{8} |x - 5| \, dx = \int_{0}^{5} |x - 5| \, dx + \int_{5}^{8} |x - 5| \, dx \] ### Step 3: Determine the sign of \( x - 5 \) in each interval. - For \( x \in [0, 5] \), \( x - 5 < 0 \) so \( |x - 5| = -(x - 5) = 5 - x \). - For \( x \in [5, 8] \), \( x - 5 \geq 0 \) so \( |x - 5| = x - 5 \). ### Step 4: Rewrite the integral with the determined expressions. Now we can rewrite the integral: \[ \int_{0}^{8} |x - 5| \, dx = \int_{0}^{5} (5 - x) \, dx + \int_{5}^{8} (x - 5) \, dx \] ### Step 5: Evaluate the first integral \( \int_{0}^{5} (5 - x) \, dx \). \[ \int_{0}^{5} (5 - x) \, dx = \left[ 5x - \frac{x^2}{2} \right]_{0}^{5} = \left( 5(5) - \frac{5^2}{2} \right) - \left( 5(0) - \frac{0^2}{2} \right) \] Calculating this gives: \[ = \left( 25 - \frac{25}{2} \right) - 0 = 25 - 12.5 = 12.5 \] ### Step 6: Evaluate the second integral \( \int_{5}^{8} (x - 5) \, dx \). \[ \int_{5}^{8} (x - 5) \, dx = \left[ \frac{x^2}{2} - 5x \right]_{5}^{8} = \left( \frac{8^2}{2} - 5(8) \right) - \left( \frac{5^2}{2} - 5(5) \right) \] Calculating this gives: \[ = \left( \frac{64}{2} - 40 \right) - \left( \frac{25}{2} - 25 \right) = (32 - 40) - \left( 12.5 - 25 \right) \] \[ = -8 - (-12.5) = -8 + 12.5 = 4.5 \] ### Step 7: Combine the results of both integrals. Now we can combine the results: \[ \int_{0}^{8} |x - 5| \, dx = 12.5 + 4.5 = 17 \] ### Final Answer: Thus, the value of the integral is: \[ \int_{0}^{8} |x - 5| \, dx = 17 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(2)^(8)|x-5|dx

Evaluate : int_(4)^(5)|x-5|dx

Evaluate : int_(4)^(5)|x-5|dx

6. int_(2)^(8)|x-5|dx

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate: int _(4) ^(5) | x-5| dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate int _(0)^(2) x^3 dx

Evaluate int_(0)^(2)2^(x)dx

Evaluate : int_(0)^(a) (dx)/(x^(2) +a^(2))

NAGEEN PRAKASHAN ENGLISH-INTEGRATION-Exercise 7p
  1. Evaluate : int(0)^(1)log ((1)/(x) -1) dx

    Text Solution

    |

  2. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  3. Evaluate : int(0)^(4) x(4-x)^(3//2)dx

    Text Solution

    |

  4. Prove that :(i) int(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int(-pi)^(...

    Text Solution

    |

  5. Evaluate : int0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)|sinx|dx

    Text Solution

    |

  9. Evaluate :int(0)^(8) |x-5|dx

    Text Solution

    |

  10. Evaluate :int(-pi//4)^(pi//4) |sin x|dx

    Text Solution

    |

  11. "If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then eva...

    Text Solution

    |

  12. if f(x) ={[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},then evaluate ...

    Text Solution

    |

  13. Prove that :int(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

    Text Solution

    |

  15. Prove that :int(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. Evaluate: int0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Prove that :int(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log(e) 2

    Text Solution

    |

  20. Evaluate : int(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

    Text Solution

    |