Home
Class 12
MATHS
Evaluate :int(-pi//4)^(pi//4) |sin x|dx...

Evaluate :`int_(-pi//4)^(pi//4) |sin x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |\sin x| \, dx \), we can follow these steps: ### Step 1: Understand the function \( |\sin x| \) The function \( |\sin x| \) is the absolute value of \( \sin x \). We need to analyze the behavior of \( \sin x \) in the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). ### Step 2: Determine where \( \sin x \) is positive or negative In the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \): - \( \sin x \) is positive for \( x \) in \( \left[0, \frac{\pi}{4}\right] \). - \( \sin x \) is negative for \( x \) in \( \left[-\frac{\pi}{4}, 0\right] \). Thus, we can rewrite the integral as: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |\sin x| \, dx = \int_{-\frac{\pi}{4}}^{0} -\sin x \, dx + \int_{0}^{\frac{\pi}{4}} \sin x \, dx \] ### Step 3: Evaluate the first integral For the first integral: \[ \int_{-\frac{\pi}{4}}^{0} -\sin x \, dx = -\left[-\cos x\right]_{-\frac{\pi}{4}}^{0} = -\left[-\cos(0) + \cos\left(-\frac{\pi}{4}\right)\right] \] Calculating the values: - \( \cos(0) = 1 \) - \( \cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) Thus, we have: \[ -\left[-1 + \frac{1}{\sqrt{2}}\right] = 1 - \frac{1}{\sqrt{2}} \] ### Step 4: Evaluate the second integral For the second integral: \[ \int_{0}^{\frac{\pi}{4}} \sin x \, dx = -\left[\cos x\right]_{0}^{\frac{\pi}{4}} = -\left[\cos\left(\frac{\pi}{4}\right) - \cos(0)\right] \] Calculating the values: - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \cos(0) = 1 \) Thus, we have: \[ -\left[\frac{1}{\sqrt{2}} - 1\right] = 1 - \frac{1}{\sqrt{2}} \] ### Step 5: Combine the results Now we combine the two results: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |\sin x| \, dx = \left(1 - \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) \] ### Final Result Thus, the final answer is: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |\sin x| \, dx = 2\left(1 - \frac{1}{\sqrt{2}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(-pi/4)^(pi/4) sin^2xdx

Evaluate: int_(-pi//4)^(pi//4)x^3sin^4xdx (ii) int_( a)^asqrt((a-x)/(a+x))dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

Evaluate int_((-pi)/4)^((pi)/4)sin^2x""dx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

NAGEEN PRAKASHAN ENGLISH-INTEGRATION-Exercise 7p
  1. Evaluate : int(0)^(1)log ((1)/(x) -1) dx

    Text Solution

    |

  2. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  3. Evaluate : int(0)^(4) x(4-x)^(3//2)dx

    Text Solution

    |

  4. Prove that :(i) int(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int(-pi)^(...

    Text Solution

    |

  5. Evaluate : int0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)|sinx|dx

    Text Solution

    |

  9. Evaluate :int(0)^(8) |x-5|dx

    Text Solution

    |

  10. Evaluate :int(-pi//4)^(pi//4) |sin x|dx

    Text Solution

    |

  11. "If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then eva...

    Text Solution

    |

  12. if f(x) ={[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},then evaluate ...

    Text Solution

    |

  13. Prove that :int(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

    Text Solution

    |

  15. Prove that :int(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. Evaluate: int0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Prove that :int(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log(e) 2

    Text Solution

    |

  20. Evaluate : int(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

    Text Solution

    |