Home
Class 12
MATHS
"If "f(x) ={underset(x^(2)+1.2 le x le ...

`"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2),` then evaluate `int_(1)^(3) f(x) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{3} f(x) \, dx \) where the function \( f(x) \) is defined as: \[ f(x) = \begin{cases} 2x + 1 & \text{for } 1 \leq x \leq 2 \\ x^2 + 1 & \text{for } 2 < x \leq 3 \end{cases} \] we will break the integral into two parts based on the definition of \( f(x) \). ### Step 1: Break the integral into two parts We can split the integral from 1 to 3 into two intervals: from 1 to 2 and from 2 to 3. \[ \int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \] ### Step 2: Substitute the function for each interval For the first interval \( [1, 2] \), \( f(x) = 2x + 1 \). For the second interval \( [2, 3] \), \( f(x) = x^2 + 1 \). Thus, we have: \[ \int_{1}^{3} f(x) \, dx = \int_{1}^{2} (2x + 1) \, dx + \int_{2}^{3} (x^2 + 1) \, dx \] ### Step 3: Evaluate the first integral Now we evaluate \( \int_{1}^{2} (2x + 1) \, dx \): \[ \int (2x + 1) \, dx = x^2 + x + C \] Now we apply the limits from 1 to 2: \[ \left[ x^2 + x \right]_{1}^{2} = (2^2 + 2) - (1^2 + 1) = (4 + 2) - (1 + 1) = 6 - 2 = 4 \] ### Step 4: Evaluate the second integral Next, we evaluate \( \int_{2}^{3} (x^2 + 1) \, dx \): \[ \int (x^2 + 1) \, dx = \frac{x^3}{3} + x + C \] Now we apply the limits from 2 to 3: \[ \left[ \frac{x^3}{3} + x \right]_{2}^{3} = \left( \frac{3^3}{3} + 3 \right) - \left( \frac{2^3}{3} + 2 \right) = \left( \frac{27}{3} + 3 \right) - \left( \frac{8}{3} + 2 \right) \] Calculating this gives: \[ = (9 + 3) - \left( \frac{8}{3} + 2 \right) = 12 - \left( \frac{8}{3} + \frac{6}{3} \right) = 12 - \frac{14}{3} \] Finding a common denominator: \[ = \frac{36}{3} - \frac{14}{3} = \frac{22}{3} \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int_{1}^{3} f(x) \, dx = 4 + \frac{22}{3} \] To add these, convert 4 to a fraction: \[ 4 = \frac{12}{3} \] So, \[ \int_{1}^{3} f(x) \, dx = \frac{12}{3} + \frac{22}{3} = \frac{34}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{1}^{3} f(x) \, dx = \frac{34}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Let f(x) ={underset(x^(2) +xb " " x ge1)(3-x " "0le x lt1). Find the set of values of b such that f(x) has a local minima at x=1.

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

If 02 le x le 2 , the maximum value of f(x)=1-x^(2) is

NAGEEN PRAKASHAN ENGLISH-INTEGRATION-Exercise 7p
  1. Evaluate : int(0)^(1)log ((1)/(x) -1) dx

    Text Solution

    |

  2. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  3. Evaluate : int(0)^(4) x(4-x)^(3//2)dx

    Text Solution

    |

  4. Prove that :(i) int(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int(-pi)^(...

    Text Solution

    |

  5. Evaluate : int0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)|sinx|dx

    Text Solution

    |

  9. Evaluate :int(0)^(8) |x-5|dx

    Text Solution

    |

  10. Evaluate :int(-pi//4)^(pi//4) |sin x|dx

    Text Solution

    |

  11. "If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then eva...

    Text Solution

    |

  12. if f(x) ={[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},then evaluate ...

    Text Solution

    |

  13. Prove that :int(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

    Text Solution

    |

  15. Prove that :int(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. Evaluate: int0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Prove that :int(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log(e) 2

    Text Solution

    |

  20. Evaluate : int(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

    Text Solution

    |