Home
Class 12
MATHS
if f(x) ={[3x+4 , 0 le x le 2],[5x , ...

if f(x) =`{[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},`then evaluate `int_(0)^(3) f(x) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{3} f(x) \, dx \) where \[ f(x) = \begin{cases} 3x + 4 & \text{for } 0 \leq x \leq 2 \\ 5x & \text{for } 2 < x \leq 3 \end{cases} \] we will split the integral into two parts based on the definition of \( f(x) \). ### Step 1: Split the Integral We can split the integral from \( 0 \) to \( 3 \) into two parts: \[ \int_{0}^{3} f(x) \, dx = \int_{0}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \] ### Step 2: Substitute the Function Now we substitute the function \( f(x) \) into the respective intervals: \[ \int_{0}^{2} (3x + 4) \, dx + \int_{2}^{3} (5x) \, dx \] ### Step 3: Evaluate the First Integral Now we evaluate the first integral: \[ \int_{0}^{2} (3x + 4) \, dx \] We can break this down: \[ = \int_{0}^{2} 3x \, dx + \int_{0}^{2} 4 \, dx \] Calculating each part: 1. For \( \int_{0}^{2} 3x \, dx \): \[ = 3 \left[ \frac{x^2}{2} \right]_{0}^{2} = 3 \left[ \frac{2^2}{2} - \frac{0^2}{2} \right] = 3 \left[ \frac{4}{2} \right] = 3 \times 2 = 6 \] 2. For \( \int_{0}^{2} 4 \, dx \): \[ = 4 \left[ x \right]_{0}^{2} = 4 [2 - 0] = 8 \] Combining these results: \[ \int_{0}^{2} (3x + 4) \, dx = 6 + 8 = 14 \] ### Step 4: Evaluate the Second Integral Now we evaluate the second integral: \[ \int_{2}^{3} 5x \, dx \] Calculating this: \[ = 5 \left[ \frac{x^2}{2} \right]_{2}^{3} = 5 \left[ \frac{3^2}{2} - \frac{2^2}{2} \right] = 5 \left[ \frac{9}{2} - \frac{4}{2} \right] = 5 \left[ \frac{5}{2} \right] = \frac{25}{2} \] ### Step 5: Combine Both Integrals Now we combine the results of both integrals: \[ \int_{0}^{3} f(x) \, dx = 14 + \frac{25}{2} \] To add these, convert \( 14 \) to a fraction: \[ 14 = \frac{28}{2} \] Thus: \[ \int_{0}^{3} f(x) \, dx = \frac{28}{2} + \frac{25}{2} = \frac{53}{2} \] ### Final Answer The value of the integral \( \int_{0}^{3} f(x) \, dx \) is: \[ \frac{53}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7q|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7o|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

The relation f is defined by f(x) ={(3x+2", "0le x le2),(x^(3)", "2 le x le 5):}. The relation g is defined by g(x) ={(3x+2", "0le x le1),(x^(3)", "1 le x le 5):} Show that f is a function and g is not a function

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

NAGEEN PRAKASHAN ENGLISH-INTEGRATION-Exercise 7p
  1. Evaluate : int(0)^(1)log ((1)/(x) -1) dx

    Text Solution

    |

  2. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  3. Evaluate : int(0)^(4) x(4-x)^(3//2)dx

    Text Solution

    |

  4. Prove that :(i) int(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int(-pi)^(...

    Text Solution

    |

  5. Evaluate : int0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

    Text Solution

    |

  8. Evaluate: int(-pi//2)^(pi//2)|sinx|dx

    Text Solution

    |

  9. Evaluate :int(0)^(8) |x-5|dx

    Text Solution

    |

  10. Evaluate :int(-pi//4)^(pi//4) |sin x|dx

    Text Solution

    |

  11. "If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then eva...

    Text Solution

    |

  12. if f(x) ={[3x+4 , 0 le x le 2],[5x , 2 le x le 3]},then evaluate ...

    Text Solution

    |

  13. Prove that :int(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

    Text Solution

    |

  15. Prove that :int(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. Evaluate: int0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

    Text Solution

    |

  18. Evaluate int(0)^(pi)(x dx)/(1+cos alpha sin x),where 0lt alpha lt pi.

    Text Solution

    |

  19. Prove that :int(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log(e) 2

    Text Solution

    |

  20. Evaluate : int(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

    Text Solution

    |