Home
Class 12
MATHS
int(0)^(3)(x^(2)+1)dx...

`int_(0)^(3)(x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{3} (x^{2} + 1) \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{3} (x^{2} + 1) \, dx \] ### Step 2: Split the integral We can split the integral into two separate integrals: \[ I = \int_{0}^{3} x^{2} \, dx + \int_{0}^{3} 1 \, dx \] ### Step 3: Integrate \( x^{2} \) Using the power rule for integration, where \( \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \), we find: \[ \int x^{2} \, dx = \frac{x^{3}}{3} \] Now, we evaluate this from 0 to 3: \[ \int_{0}^{3} x^{2} \, dx = \left[ \frac{x^{3}}{3} \right]_{0}^{3} = \frac{3^{3}}{3} - \frac{0^{3}}{3} = \frac{27}{3} - 0 = 9 \] ### Step 4: Integrate \( 1 \) The integral of 1 is simply: \[ \int 1 \, dx = x \] Now, we evaluate this from 0 to 3: \[ \int_{0}^{3} 1 \, dx = \left[ x \right]_{0}^{3} = 3 - 0 = 3 \] ### Step 5: Combine the results Now we combine the results from the two integrals: \[ I = 9 + 3 = 12 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

(3) (a) int_(0)^(2)(x^(4)+1)dx

int_(0)^(1)x^2dx

1. int_(0)^(2)3x^(2)dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_(0)^(2)(x+2)/(x+1)dx is

Let f:[0,1]to R be a continuous function then the maximum value of int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx for all such function(s) is: