Home
Class 12
MATHS
int(1)^(4) (2x^(2) +1) dx...

`int_(1)^(4) (2x^(2) +1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{4} (2x^{2} + 1) \, dx \), we will break it down into steps. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{1}^{4} (2x^{2} + 1) \, dx \] ### Step 2: Separate the integral We can separate the integral into two parts: \[ I = \int_{1}^{4} 2x^{2} \, dx + \int_{1}^{4} 1 \, dx \] ### Step 3: Integrate the first part Using the power rule for integration, where \( \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \): \[ \int 2x^{2} \, dx = 2 \cdot \frac{x^{3}}{3} = \frac{2x^{3}}{3} \] Now we evaluate this from 1 to 4: \[ \left[ \frac{2x^{3}}{3} \right]_{1}^{4} = \frac{2(4^{3})}{3} - \frac{2(1^{3})}{3} \] Calculating \( 4^{3} = 64 \): \[ = \frac{2 \cdot 64}{3} - \frac{2 \cdot 1}{3} = \frac{128}{3} - \frac{2}{3} = \frac{126}{3} = 42 \] ### Step 4: Integrate the second part Now we integrate the second part: \[ \int 1 \, dx = x \] Evaluating this from 1 to 4 gives: \[ \left[ x \right]_{1}^{4} = 4 - 1 = 3 \] ### Step 5: Combine the results Now we combine the results from both parts: \[ I = 42 + 3 = 45 \] ### Final Answer Thus, the value of the integral is: \[ \int_{1}^{4} (2x^{2} + 1) \, dx = 45 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

Evaluate : (i) int_(-oo)^(oo) (dx)/(x^(2)+2x+2) , (ii) int_(sqrt(2))^(oo)(dx)/(xsqrt(x^(2)-1)) , (iii) int_(0)^(4)(x^(2))/(1+x)dx (iv) int_(0)^(pi//2) sqrt(costheta)sin^(3)theta

int(1)/(4x^(2) +9) dx

int_(-1)^(1)e^(2x)dx

Evaluate : int (1)/(4-x^(2)) dx

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

int_(-1)^(2) (x) /((x^(2)+1)^(2))dx

int(x^(2)+1)/(x^(4)-2x^(2)+1)dx

int_(1)^(2) (1)/(2(1+x^(4)))dx