Home
Class 12
MATHS
int(1)^(5) (x^(2) -2x) dx...

`int_(1)^(5) (x^(2) -2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{5} (x^{2} - 2x) \, dx \), we will follow these steps: ### Step 1: Write the integral We start by writing down the integral we need to solve: \[ I = \int_{1}^{5} (x^{2} - 2x) \, dx \] ### Step 2: Split the integral We can split the integral into two separate integrals: \[ I = \int_{1}^{5} x^{2} \, dx - \int_{1}^{5} 2x \, dx \] ### Step 3: Integrate \(x^{2}\) Using the power rule for integration, we find: \[ \int x^{2} \, dx = \frac{x^{3}}{3} \] So, \[ \int_{1}^{5} x^{2} \, dx = \left[ \frac{x^{3}}{3} \right]_{1}^{5} = \frac{5^{3}}{3} - \frac{1^{3}}{3} = \frac{125}{3} - \frac{1}{3} = \frac{124}{3} \] ### Step 4: Integrate \(2x\) Now we integrate \(2x\): \[ \int 2x \, dx = x^{2} \] Thus, \[ \int_{1}^{5} 2x \, dx = \left[ x^{2} \right]_{1}^{5} = 5^{2} - 1^{2} = 25 - 1 = 24 \] ### Step 5: Combine the results Now we combine the results from the two integrals: \[ I = \frac{124}{3} - 24 \] To subtract, we convert \(24\) into a fraction with a denominator of \(3\): \[ 24 = \frac{72}{3} \] So, \[ I = \frac{124}{3} - \frac{72}{3} = \frac{124 - 72}{3} = \frac{52}{3} \] ### Final Answer The value of the integral is: \[ I = \frac{52}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)x^(5)dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

int_(-1)^(1)e^(2x)dx

Evaluate the following definite integral: int_(-1)^1 1/(x^2+2x+5)dx

Evaluate the integrals int_(-1)^(1) (1)/(x^(2)+2x+5)dx

The value of int_(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal to

int_(0)^(1) (1)/(x^(2) +2x+3)dx

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is