Home
Class 12
MATHS
int(0)^(2) e^(x) dx...

`int_(0)^(2) e^(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} e^{x} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start by defining the integral: \[ I = \int_{0}^{2} e^{x} \, dx \] ### Step 2: Find the antiderivative The antiderivative of \( e^{x} \) is \( e^{x} \). Therefore, we can express the integral as: \[ I = \left[ e^{x} \right]_{0}^{2} \] ### Step 3: Evaluate the definite integral Now we will evaluate the antiderivative at the upper and lower limits: \[ I = e^{2} - e^{0} \] ### Step 4: Simplify the expression Since \( e^{0} = 1 \), we can simplify the expression: \[ I = e^{2} - 1 \] ### Final Result Thus, the value of the integral \( \int_{0}^{2} e^{x} \, dx \) is: \[ I = e^{2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(x) dx=1

int_(-1)^(2) e^(-x)dx

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

int_(-1)^(1)e^(2x)dx

int_0^2 e^(x/2) dx

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

1. int_(0)^(oo)e^(-x/2)dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx