Home
Class 12
MATHS
int(-1)^(2) e^(-x)dx...

`int_(-1)^(2) e^(-x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{2} e^{-x} \, dx \), we will follow these steps: ### Step-by-Step Solution: 1. **Set up the integral**: We start with the integral: \[ I = \int_{-1}^{2} e^{-x} \, dx \] 2. **Substitution**: We will use the substitution \( t = -x \). Then, differentiating both sides gives: \[ dt = -dx \quad \Rightarrow \quad dx = -dt \] 3. **Change the limits of integration**: When \( x = -1 \): \[ t = -(-1) = 1 \] When \( x = 2 \): \[ t = -2 \] Thus, the limits change from \( x: -1 \to 2 \) to \( t: 1 \to -2 \). 4. **Rewrite the integral**: Substituting \( e^{-x} \) and \( dx \) into the integral, we have: \[ I = \int_{1}^{-2} e^{t} (-dt) = -\int_{1}^{-2} e^{t} \, dt \] 5. **Reversing the limits**: Changing the limits of integration changes the sign: \[ I = \int_{-2}^{1} e^{t} \, dt \] 6. **Integrate**: The integral of \( e^{t} \) is \( e^{t} \): \[ I = \left[ e^{t} \right]_{-2}^{1} \] 7. **Evaluate the limits**: Now we evaluate the definite integral: \[ I = e^{1} - e^{-2} \] 8. **Final answer**: Thus, the final result is: \[ I = e - e^{-2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7r|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7s|19 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7p|40 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

Evaluate : int_(-1)^(1)e^(x)dx

Evaluate the following definite integrals: int_(-1)^1(e^(2x)dx)

1. int_(0)^(oo)e^(-x/2)dx

int(x+1)^(2)e^(x)dx is equal to

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

int_(1)^(e) (e^(x) (1+xlog x))/(x) dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))