Home
Class 12
MATHS
Evaluate : int(x^(2) +1)"log x dx"...

`Evaluate : int(x^(2) +1)"log x dx"`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int (x^2 + 1) \log x \, dx \), we will use the method of integration by parts. ### Step-by-step Solution: 1. **Identify the parts for integration by parts**: We choose: - \( u = \log x \) (first function) - \( dv = (x^2 + 1) \, dx \) (second function) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.8|6 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(1)/(x^(2)). " log x dx "

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int x^n log x dx.

Evaluate: int_(0)^(1) log (1/x-1)dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate : int _(1) ^(e) ( dx)/( x (1 + log x))

Evaluate int(sqrt(x^(2)+1){log_(e)(x^(2)+1)-2logx}dx)/(x^(4)) .

Evaluate: int(log(logx)/x)\ dx