Home
Class 12
MATHS
Choose the correct answer intx^2e^x^3dx ...

Choose the correct answer `intx^2e^x^3dx` equals (A) `1/3e^x^3+C` (B) `1/3e^x^2+C` (C) `1/2e^x^3+C` (D) `1/2e^x^2+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 e^{x^3} \, dx \), we can use the method of substitution. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let \( t = x^3 \). Then, differentiate both sides to find \( dt \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] ### Step 2: Rewrite \( x^2 \, dx \) From the substitution, we can express \( x^2 \, dx \) in terms of \( dt \): \[ x^2 \, dx = \frac{dt}{3} \] ### Step 3: Substitute into the integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int x^2 e^{x^3} \, dx = \int e^t \cdot \frac{dt}{3} \] ### Step 4: Factor out the constant Factor out the constant \( \frac{1}{3} \): \[ = \frac{1}{3} \int e^t \, dt \] ### Step 5: Integrate \( e^t \) The integral of \( e^t \) is simply \( e^t \): \[ = \frac{1}{3} e^t + C \] ### Step 6: Substitute back for \( t \) Now, substitute back \( t = x^3 \): \[ = \frac{1}{3} e^{x^3} + C \] ### Final Answer Thus, the final answer is: \[ \int x^2 e^{x^3} \, dx = \frac{1}{3} e^{x^3} + C \]

To solve the integral \( \int x^2 e^{x^3} \, dx \), we can use the method of substitution. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let \( t = x^3 \). Then, differentiate both sides to find \( dt \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.8|6 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer intx^2e^(x^3)dx equals(A) 1/3e^(x^3) +C (B) 1/3e^(x^2)+C (C) 1/2e^(x^3)+C (D) 1/2e^(x^2)+C

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to(A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

Choose the correct answer intsqrt(1+x^2)dx is equal to(A) x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C (B) 2/3(1+x^2)^(3/2)+C (C) 2/3x(1+x^2)^(3/2)+C (D) (x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C

int(e^x(1+x))/(cos^2 (e^x * x) )dx equals(A) -cot(e x^x)+C (B) tan(x e^x)+C (C) tan(e^x)+C (D) cot(e^x)+C

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

int e^x ((1-sinx)/(1-cosx)) dx= (A) e^xtan(x/2)+C (B) e^xcot(x/2)+C (C) -1/2 e^xtan(x/2)+C (D) -1/2 e^xcot(x/2)+C

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C

The solution of y(2xy+e^x)dx-e^xdy=0 is (A) x^2+ye^(-x)=C (B) xy^2+e^(-x)=C (C) x/y+e^(-x)/x^2=C (D) x^2+e^x/y=C

int2/((e^x+e^(-x))^2)\ dx (a) ( e^(-x))/(e^x+e^(-x))+C (b) -1/(e^x+e^(-x))+C (c) (-1)/((e^x+1)^2)+C (d) 1/(e^x-e^(-x))+C

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a