Home
Class 12
MATHS
Evaluate: inte^(3logx)(x^4+1)^(-1)\ dx...

Evaluate: `inte^(3logx)(x^4+1)^(-1)\ dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int e^{3 \log x} (x^4 + 1)^{-1} \, dx \), we can follow these steps: ### Step 1: Simplify the Exponential We start with the expression \( e^{3 \log x} \). Using the property of logarithms, we can rewrite this as: \[ e^{3 \log x} = e^{\log x^3} = x^3 \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(logx)/x\ dx

Evaluate: int(logx)/(x^3)\ dx

Evaluate: int(logx)/(x^2)\ dx

Evaluate: int(logx^2)/(x)dx

Evaluate: int_1^2(logx)/(x^2)dx

Evaluate: int_1^2(logx)/(x)dx

Evaluate: int_0^1logx dx

Evaluate: int(3x)/(1+2x^4)dx

Evaluate: inte^x\ (logx+1/(x^2))\ dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx