Home
Class 12
MATHS
int(0)^(1) x e^(x) dx=1...

`int_(0)^(1) x e^(x) dx=1`

Text Solution

Verified by Experts

`int_(0)^(1) xe^(x) dx=[x int e^(x) dx-int 1.e^(x) dx]_(0)^(1)`
`=[xe^(x) -e^(x)]_(0)^(1)=[e^(x)(x-1)]_(0)^(1)`
`=e(1-1)-e^(0)(0-1)=0+1=1`
Hence proved.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

int_0^1 x^2 e^(2x) dx

Prove that int_0^1x e^x dx=1

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Prove the following : e^(-(1)/(e)) lt int_(0)^(1)x^(x)dx lt 1

Evaluate : int_(-1)^(1)e^(x)dx