Home
Class 12
MATHS
prove that (d)/(dx)[(1-tanx)/(1+tanx)]^(...

prove that `(d)/(dx)[(1-tanx)/(1+tanx)]^(1/2)=(-1)/((sqrt(cos2x))cosx)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PRAKASHAN|Exercise Chapter test (4 mark question)|7 Videos
  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PRAKASHAN|Exercise GROUP C (30 MARKS) 11. ANSWER ANY ONE QUESTIONS |2 Videos
  • DETERMINANTS

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST (6 MARK QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]

Differentiate (1-tanx)/(1+tanx)

Differentiate tan^(-1) ((1+sinx)/(1-sinx))^(1/2) w.r.t. log((1+cosx)/(1-cosx)) .

Prove the formulae(4) to (7). d/dx(cos^-1x)=(-1)/(sqrt1-x^2)

Differentiate tan^(-1)((1+sinx)/(1-sinx))^(1/2) with respect to ((1+cosx)/(1-cosx)) .

Show that (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)"sin"^(-1)(x)/(a)]=sqrt(a^(2)-x^(2))

Find d/(dx)cot^(-1) tan(pi/2-x) .

Differentiate tan^(-1)((sqrtx-x)/(1+xsqrt(x))) .

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) w.r.t. sin^(-1)(2xsqrt(1-x^(2)))