Home
Class 12
MATHS
If A, B, C, D, E are the.vertices of a r...

If A, B, C, D, E are the.vertices of a regular pentagon, find the vector sum` vec(AB)+ vec(BC)+ vec(CD)+vec (DE)+vec(EA)` .

Text Solution

Verified by Experts

The correct Answer is:
`vec(0)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    ARIHANT PRAKASHAN|Exercise TOPIC -1 (PRACTICE QUESTIONS) (4 MARK QUESTIONS) |12 Videos
  • VECTORS

    ARIHANT PRAKASHAN|Exercise TOPIC TEST 1|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST|24 Videos
  • VERY SIMILAR TEST 1

    ARIHANT PRAKASHAN|Exercise Section C |10 Videos

Similar Questions

Explore conceptually related problems

If A, B and C are the vertices of a Delta ABC , then what is the value of vec(AB) + vec(BC) + vec(CA) ?

If A, B, C and D are the vertices of a square, find vec(AB) + vec(BC)+ vec(CD) + vec(DA) .

Knowledge Check

  • For the non-zero vectors vec(a),vec(b) and vec(c ),vec(a)*(vec(b)xxvec(c ))=0 , if

    A
    `vec(b) bot vec(c )`
    B
    `vec(a) bot vec(b)`
    C
    `vec(a)||vec(c )`
    D
    `vec(a) bot vec (c )`
  • Similar Questions

    Explore conceptually related problems

    If A,B and C are the vertices of a DeltaABC , then what is the value of vec(AB)+vec(BC)+vec(CA) ?

    Can vec A + vec B = vec A - vec B

    In triangle ABC, find vec(AB)+vec(BC)+vec(CA)

    If A, B, P, Q and R are the five points in a plane, then show that the sum of the vectors vec(AP), vec(AQ), vec(AR), vec(PB), vec(QB) and vec(RB) is 3 vec(AB) .

    Simplify [vec(a)-vec(b)vec(b)-vec(c)vec(c)-vec(a)] .

    If vec(a) = hat(i) + 2hat(j) + hat(k), vec(b) = 2hat(i) + hat(j) and vec(c) = 3hat(i) - 4hat(j) - 5hat(k) , then find a unit vector perpendicular to both of the vectors (vec(a) - vec(b)) and (vec(c) - vec(b)) .

    If vec(a), vec(b) and vec(c) are three non-coplanar vectors and vec(r) is only arbitrary vector, then find the value of [vec(b) vec(c) vec(r)] vec(a) + [ vec(c) vec(a) vec(r)] vec(b) + [ vec(a) vec(b) vec(r)] vec(c)