Home
Class 12
MATHS
sum(n=1)^(n) tan^(-1) (2m)/(m^(4) + m^(2...

`sum_(n=1)^(n) tan^(-1) (2m)/(m^(4) + m^(2) + 2)`=

A

`tan^(-1)(n^(2) + n+1)`

B

`tan^(-1) (n^(2) - n+1)`

C

`tan^(-1)(n^(2) + n)/(n^(2) + n+2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEEE MAIN PAPERS |20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) (SINGLE CORRECT ANSWER TYPE QUESTIONS)|28 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :

Prove that: sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))=tan^(-1)((n^(2)+n)/(n^(2)+n+2))

The value of sum_(m=1)^(oo)tan^(-1)((2m)/(m^(4)+m^(2)+2)) is

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

If sum_(i=1)^(10)tan^(-1)((3)/(9r^(2)+3r-1))=cot^(-1)((m)/(n)) (where m and n are coprime) then the value of (2m+n)/(8) is