Home
Class 12
MATHS
4/pi sum(r=1)^(infty) cos^(-1)(1/sqrt(r(...

`4/pi sum_(r=1)^(infty) cos^(-1)(1/sqrt(r(r+1)) + sqrt((r-1)/(r+1)))` = ………………

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEEE MAIN PAPERS |20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) (SINGLE CORRECT ANSWER TYPE QUESTIONS)|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos

Similar Questions

Explore conceptually related problems

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1)x)) is -

[sum_(r=1)^(n)((1)/(r)-(1)/(r+1))]

sum_(r=1)^(n)sin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to tan^(-1)(sqrt(n))-(pi)/(4)tan^(-1)(sqrt(n+1))-(pi)/(4)tan^(-1)(sqrt(n))(d)tan^(-1)(sqrt(n)+1)

Sum of series sum_(r=1)^(n)sin^(-1)[(2r+1)/(r(r+1)(sqrt(r^(2)+2r)+sqrt(r^(2)-1)))]

Sum of series sum_(r=1)^(n)sin^(-1)[(2r+1)/(r(r+1)[sqrt(r^(2)+2r)+sqrt(r^2-1))]]

Sum of series sum_(r=1)^(n)sin^(-1)[(2r+1)/(r(r+1)[sqrt(r^(2)+2r)+sqrt(r^2-1))]]

Find the sum sum_(r=1)^(n)(cos((2r-1)pi))/((2n+1))

If sum_(r=1)^(n)cos^(-1)x_(r)=0, then sum_(r=1)^(n)x_(r) equals to

sum_(r=0)^(oo)tan^(-1)((r((r+1)!))/((r+1)+((r+1)!)^(2))) is equal