Home
Class 12
MATHS
If y=x^(x^x). Prove that logy=x^x(logx)...

If `y=x^(x^x)`. Prove that `logy=x^x(logx)`

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|53 Videos
  • DETERMINANTS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|116 Videos

Similar Questions

Explore conceptually related problems

If y^x=e^(y-x), prove that dy/dx=(1+logy)^2/logy .

If e^(x-y)=x^y then prove that dy/dx=logx/[logex]^2

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If x y=a x^2+b/x , prove that x^2 y_2+2(x (dy/dx)-y)=0

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0

Find dy/dx if y=x^x+(logx)^x

If y=a cos(log x)+b sin(logx) , Prove that x^2y_2+xy_1+y=0 .