Home
Class 12
MATHS
If y^x=e^(y-x), prove that dy/dx=(1+logy...

If `y^x=e^(y-x),` prove that `dy/dx=(1+logy)^2/logy`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|53 Videos
  • DETERMINANTS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|116 Videos

Similar Questions

Explore conceptually related problems

If e^(x-y)=x^y then prove that dy/dx=logx/[logex]^2

If y=sin 2x , Prove that dy/dx=2cos2x

If y=log(1/x) , show that dy/dx+e^y=0

If e^y(x+1)=1 . Show that dy/dx=-e^y

If y=x^(x^x) . Prove that logy=x^x(logx)

If xsqrt(1+y)=sqrtx , prove that dy/dx= -1/(x^2)

If y=3e^(2x)+2e^(3x) , prove that (d^2y)/(dx^2)-5dy/dx+6y=0

If y=3e^(2x)+2 e^(3x) , prove that (d^2y)/(dx^2)-5 (dy/dx)+6 y=0

If cos y=x cos (a+y) prove that (dy/dx)=(cos ^2(a+y))/sina