Home
Class 12
MATHS
Given that logy=tan^-1x. Show that (1+x^...

Given that `logy=tan^-1x`. Show that `(1+x^2)y_1=y`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|53 Videos
  • DETERMINANTS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|116 Videos

Similar Questions

Explore conceptually related problems

Given that logy=tan^-1x . Show that (1+x^2)y_2+(2x-1)y_1=0

Given that logy=tan^-1x . Find y_1 .

Given, y=sqrt(tan^-1x show 2(1+x^2)ydy/dx=1

If y=(tan^(-1)x)^2 , show that (x^2+1)^2y_2+2x(x^2+1)y_1=2 .

Given, y=sqrt(tan^-1x show (1+x^2)y(d^2y)/(dx^2)+(1+x^2)(dy/dx)^2+2xydy/dx=0

If x=sint and y=sinmt show that (1-x^2)y_2-xy_1+m^2y=0

Three points P(h, k), Q(dotx_1, y_1) and R(x_2, y_2) lie on a line. Show that (h-x_1)(y_2-y_1)=(k-y_1)(x_2-x_1)

If e^y(x+1)=1 . Show that dy/dx=-e^y

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0

If tan^-1x+tan^-1y+tan^-1z=pi ,show that x+y+z=xyz