Home
Class 12
MATHS
Let u=sin^2x&v=e^(cosx).Find du/dx and d...

Let `u=sin^2x&v=e^(cosx)`.Find du/dx and dv/dx

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|53 Videos
  • DETERMINANTS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|116 Videos

Similar Questions

Explore conceptually related problems

u=(sinx)^(tanx) , v=(cosx)^(secx) . Find (du)/dx and (dv)/dx .

If xy=e^(x-y) . Find dy/dx .

Let y=x^sinx+(sinx)^x . Find dy/dx

Let z=sinx-cosx . Find dz/dx .

Find dy/dx of e^(x^3) .

If y=sin(m sin^-1x) , Find dy/dx .

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

If y=sin^-1x ,Find dy/dx

If u=2(t-sint)andv=2(1-cost) , then (dv)/(du) at t=(2pi)/(3) is equal to