Home
Class 12
MATHS
If y=a cos(log x)+b sin(logx), Prove tha...

If `y=a cos(log x)+b sin(logx)`, Prove that `x^2y_2+xy_1+y=0`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|53 Videos
  • DETERMINANTS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|116 Videos

Similar Questions

Explore conceptually related problems

Let y=3cos(logx)+4sin(logx) Prove that x^2y_2+xy_1+y=0

If f(x)=sin(logx) , prove that x^2y_2+xy_1+y=0

If y=3 cos (log x)+4 sin (log x) Show that x^2 y_2+x y_1+y=0

a) Find (dy/dx) if i) y=sin (x^3+7) ii) x=a(t-sin t), y=a(1-cos t) b) If y=a cos (log x)+b sin (log x) Prove that x^2 (d^2 y)/(d x^2)+x (dy/dx)+y=0

If y=sin^-1x , prove that (1-x^2)y_2-xy_1=0

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If y=5 cos x-3 sin x , prove that (d^2y)/(dx^2)+y=0

If y = log ( 1 + sin x) , prove that y_(4) + y_(3) y_(1) + y_(2)^(2) = 0

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0

If y=sin 2x , Prove that dy/dx=2cos2x