Home
Class 12
MATHS
Find n if (^(2n)C2)/(^(n)C2)= 12:1...

Find `n if (^(2n)C_2)/(^(n)C_2)= 12:1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \[ \frac{{^{2n}C_2}}{{^{n}C_2}} = \frac{12}{1} \] ### Step-by-Step Solution: 1. **Write the Combination Formula**: The combination formula is given by: \[ ^nC_r = \frac{n!}{r!(n-r)!} \] Therefore, we can express \( ^{2n}C_2 \) and \( ^nC_2 \) using this formula. 2. **Express \( ^{2n}C_2 \) and \( ^nC_2 \)**: \[ ^{2n}C_2 = \frac{(2n)!}{2!(2n-2)!} \] \[ ^nC_2 = \frac{n!}{2!(n-2)!} \] 3. **Substitute into the Ratio**: Substitute these expressions into the ratio: \[ \frac{{^{2n}C_2}}{{^{n}C_2}} = \frac{\frac{(2n)!}{2!(2n-2)!}}{\frac{n!}{2!(n-2)!}} = \frac{(2n)! \cdot (n-2)!}{(2n-2)! \cdot n!} \] 4. **Simplify the Ratio**: The \( 2! \) cancels out, so we have: \[ \frac{(2n)! \cdot (n-2)!}{(2n-2)! \cdot n!} = 12 \] 5. **Use Factorial Relationships**: We can express \( (2n)! \) as \( (2n)(2n-1)(2n-2)! \) and \( n! \) as \( n(n-1)(n-2)! \): \[ \frac{(2n)(2n-1)(2n-2)! \cdot (n-2)!}{(2n-2)! \cdot n(n-1)(n-2)!} = 12 \] The \( (2n-2)! \) and \( (n-2)! \) cancel out: \[ \frac{(2n)(2n-1)}{n(n-1)} = 12 \] 6. **Cross Multiply**: Cross multiplying gives: \[ (2n)(2n-1) = 12n(n-1) \] 7. **Expand Both Sides**: Expanding both sides results in: \[ 4n^2 - 2n = 12n^2 - 12n \] 8. **Rearranging the Equation**: Rearranging gives: \[ 4n^2 - 12n^2 + 12n - 2n = 0 \] \[ -8n^2 + 10n = 0 \] 9. **Factor Out Common Terms**: Factoring out \( 2n \): \[ 2n(-4n + 5) = 0 \] 10. **Solve for \( n \)**: This gives us two solutions: \[ 2n = 0 \quad \text{or} \quad -4n + 5 = 0 \] From \( 2n = 0 \), we get \( n = 0 \). From \( -4n + 5 = 0 \), we get \( n = \frac{5}{4} = 1.25 \). 11. **Conclusion**: Since \( n \) must be a natural number, the only valid solution is \( n = 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMBINATIONS - FOR BOARDS

    KC SINHA ENGLISH|Exercise Exercise|84 Videos
  • CIRCLES - FOR COMPETITION

    KC SINHA ENGLISH|Exercise Exercise|202 Videos
  • COMPLEX NUMBERS - FOR BOARDS

    KC SINHA ENGLISH|Exercise Exercise|200 Videos

Similar Questions

Explore conceptually related problems

Determine n if (i) .^(2n) C_2: "^n C_2=12 :1 (ii) .^(2n) C_3: "^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Find C_0 + (C_1)/(2) + (C_2)/(2^2) + (C_3)/(2^3)+…..+(C_n)/(2^n)= ?

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .