Home
Class 12
MATHS
If l1^2+m1^2+n1^2=1 etc., and l1 l2+m1...

If `l_1^2+m_1^2+n_1^2=1` etc., and `l_1 l_2+m_1 m_2+n_1 n_2 = 0`, etc. and `Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)|` then

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos

Similar Questions

Explore conceptually related problems

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

The direction cosines of a line equally inclined to three mutually perpendiclar lines having direction cosines as l_(1),m_(1),n_(1),l_(2),m_(2),n_(2) and l_(3), m_(3),n_(3) are

Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as l_1,m_1, n_1a n dl_2, m_2, n_2 are proportional to l_1+l_2,m_1+m_2, n_1+n_2 Statement 2: The angle between the two intersection lines having direction cosines as l_1,m_1, n_1a n dl_2, m_2, n_2 is given by costheta=l_1l_2+m_1m_2+n_1n_2 (a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1. (a) Statement 1 and Statement 2, both are correct. Statement 2 is not the correct explanation for Statement 1. (c) Statement 1 is correct but Statement 2 is not correct. (d) Statement 2 is correct but Statement 1 is not correct.

The combined equation of the lines l_1a n dl_2 is 2x^2+6x y+y^2=0 and that of the lines m_1a n dm_2 is 4x^2+18 x y+y^2=0 . If the angle between l_1 and m_2 is alpha then the angle between l_2a n dm_1 will be

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

Prove that vectors vec u=(a l+a_1l_1) hat i+(a m+a_1m_1) hat j+(a n+a_1n_1) hat k vec v=(b l+b_1l_1) hat i+(b m+b_1m_1) hat j+(b n+b_1n_1) hat k vec w=(b l+b_1l_1) hat i+(b m+b_1m_1) hat j+(b n+b_1n_1) hat k are coplanar.

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

If vec aa n d vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |l_1l_2l_3m_1m_2m_3 1 1 1|=0.

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

CENGAGE-DETERMINANTS-All Questions
  1. The value of determinant |b c-a^2a c-b^2a b-c^2a c-b^2a b-c^2b c-a^2a ...

    Text Solution

    |

  2. The value of the determinant (a1-b1)^2(a1- ...

    Text Solution

    |

  3. If l1^2+m1^2+n1^2=1 etc., and l1 l2+m1 m2+n1 n2 = 0, etc. and Delta...

    Text Solution

    |

  4. Integrate (sinx)/((sinx-cosx))dx=?

    Text Solution

    |

  5. The value of determinant |[ ^n C(r-1), ^n Cr, (r+1)^(n+2)C(r+1)],[ ^n...

    Text Solution

    |

  6. Let |{:(x,,2,,x),(x^(2),,x,,6),(x,,x,,6):}|=Ax^(4) +Bx^(3)+Cx^(2)+Dx+E...

    Text Solution

    |

  7. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  8. The value of the determinant |[sintheta, costheta, sin2theta] , [sin(t...

    Text Solution

    |

  9. Find the value of the determinant |b cc a a b p q r1 1 1|,w h e r ea ,...

    Text Solution

    |

  10. let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d))...

    Text Solution

    |

  11. For all values of A,B,C and P,Q,R show that |{:(cos(A-P),,cos(A-Q)...

    Text Solution

    |

  12. Let lambdaa n dalpha be real. Find the set of all values of lambda for...

    Text Solution

    |

  13. Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c...

    Text Solution

    |

  14. If (x)=|alpha+xtheta+xlambda+xbeta+xvarphi+xmu+xgamma+xpsi+x v+x| show...

    Text Solution

    |

  15. If alpha,beta,gamma are different from 1 and are the roots of a x^3+b ...

    Text Solution

    |

  16. If p+q+r=0=a+b+c =0, then the value of the determnalnt |p a q b r c q ...

    Text Solution

    |

  17. Let =|2a1b1a1b2+a2b1a1b3+a3b1a1b2+a2b1 2a2b2a2b3+a3b2a1b3+a3b1a3b2+a2b...

    Text Solution

    |

  18. If 2s=a+b+c and A=|[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^...

    Text Solution

    |

  19. Evaluate |^x C1^x C2^x C3^y C1^y C2^y C3^z C1^z C2^z C3|

    Text Solution

    |

  20. Using factor theorem, show that |(-2a,a+b,c+a),(a+b,-2a,b+c),(c+a,c+b,...

    Text Solution

    |