Home
Class 12
MATHS
Let S and S' be the foci of the ellipse ...

Let S and S' be the foci of the ellipse and B be any one of the extremities of its minor axis. If `DeltaS'BS=8sq.` units, then the length of a latus rectum of the ellipse is

A

`2sqrt(2)`

B

`2`

C

`4`

D

`4sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise Chapter 7 (Hyperbola)|7 Videos
  • JEE 2019

    CENGAGE|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 5 (Parabola)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos

Similar Questions

Explore conceptually related problems

S and T are the foci of an ellipse and B is an end point of the minor axis . IF /_\STB is equilateral then e =

S and T are the foci of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 and B is an end of the minor axis. If STB is an equilateral triangle, the eccentricity of the ellipse is . . .

P and Q are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(36)+(y^(2))/(16)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(4)+(y^(2))/(25)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(16)+(y^(2))/(9)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(25)+(y^(2))/(100)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(49)+(y^(2))/(36)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(100)+(y^(2))/(400)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. 36x^(2)+4y^(2)=144