Home
Class 12
MATHS
Let S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(...

Let `S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1}`, where `r ne pm 1`. Then S represents:

A

A hyperbolawhose eccentricity is `(2)/(sqrt(r+1))`, where `0 lt r lt 1`.

B

An ellipse whose eccentricity is `(1)/(sqrt(r+1)), " where" r gt 1`

C

A hyperbola whose eccentricity is `(2)/(sqrt(1-r)), " where " 0 lt r lt 1`.

D

An ellipse whose eccentricity is `sqrt((2)/(r+1)), " where " r gt 1`.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE|Exercise Integer Answer type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 6 (Ellipse)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos

Similar Questions

Explore conceptually related problems

If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2))) where x, y in R , then find the least possible value of y.

The equation (x^2)/(2 - r) + (y^2)/(r - 5) + 1 = 0 represent an ellipse iff

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

The equation (x^2)/(1-r)-(y^2)/(1+r)=1,r >1, represents (a)an ellipse (b) a hyperbola (c)a circle (d) none of these

Let f={(x, x^2/(1+x^(2))), x in R} be a function from R into R. Determine the range of f.

Let S (1,2,3). R be(1, 1) (1.2) (2, 2) (1.3) (3.1), what are the elements to be included to make R reflexive:

x^2/(r^2-r-6)+y^2/(r^2-6r+5)=1 will represent the ellipse if r lies in the interval

Let x gt 0 , y gt 0 , z gt 0 are respectively the 2^(nd) , 3^(rd) , 4^(th) terms of a G.P. and Delta=|{:(x^(k),x^(k+1),x^(k+2)),(y^(k),y^(k+1),y^(k+2)),(z^(k),z^(k+1),z^(k+2)):}|=(r-1)^(2)(1-(1)/(r^(2))) (where r is the common ratio), then