Home
Class 12
MATHS
The reflection of the point veca in the ...

The reflection of the point `veca` in the plane `vecr.vecn=q` is (A) `veca+ (vecq-veca.vecn)/(|vecn|` (B) `veca+2((vecq-veca.vecn)/(|vecn|^2))vecn` (C) `veca+(2(vecq+veca.vecn))/(|vecn|)` (D) none of these

A

`veca+((vecq-veca.vecn))/(|vecn|)`

B

`veca+2(((vecq-veca.vecn))/(|vecn|^(2)))vecn`

C

`veca+(2(vecq-veca.vecn))/(|vecn|)vecn`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b

Given plane is `vecr.vecn=q`
Let the image of `A(veca)` in the plane be `B(vecb)`.

Equation of AC is `vecr=veca+lamdavecn`
(`because` AC is normal to the plane) (ii)
Solving (i) and (ii), we get
`(veca+lamdavecn).vecn=q`
or `lamda=(q-veca.vecn)/(|vecn|^(2)).vecn`
But `vec(OC)=(veca+vecb)/(2)`
`becauseveca+((q-veca.vecn)vecn)/(|vecn|^(2))=(veca+vecb)/(2)`
or `vecb=veca+2((q-veca.vecn)/(|vecn|^(2)))`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Reasoning Questions)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise SUBJECTIVE TYPE|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

The projection of point P(vecp) on the plane vecr.vecn=q is (vecs) , then

Distance of point P(vecP) from the plane vecr.vecn=0 is

The equation of the line throgh the point veca parallel to the plane vecr.vecn =q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

If vectors veca and vecb are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is perpendicular to veca is (A) vecb+(vecbxxveca)/(|veca|^2) (B) (veca.vecb)/(|vecb|^2) (C) vecb-(vecb.veca)/(|veca|)^2veca (D) (vecaxx(vecbxxveca))/(|vecb|^2

Find the equation of a straight line in the plane vecr.vecn=d which is parallel to vecr.vecn=d("where "vecn.vecb=0) .

The scalar vecA.(vecB+vecC)xx(vecA+vecB+vecC) equals (A) 0 (B) [vecA vecB vecC]+[vecB vecC vecA] (C) [vecA vecB vecC] (D) none of these

if veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca,vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca,vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1),vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1),vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of orthogonal vectors is

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc0 is (A) |[veca vecb vecc]| (B) |vecr| (C) |[veca vecb vecr]vecr| (D) none of these

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The plane vecr cdot vecn = q will cotain the line vecr = veca + lambda vecb if

CENGAGE-THREE-DIMENSIONAL GEOMETRY -Exercise (Single)
  1. Shortest distance between the lines (x-1)/1=(y-1)/1=(z-1)/1a n d(x-...

    Text Solution

    |

  2. Distance of point P(vecP) from the plane vecr.vecn=0 is

    Text Solution

    |

  3. The reflection of the point veca in the plane vecr.vecn=q is (A) veca+...

    Text Solution

    |

  4. The angle theta between the line vecr=veca+lambdavecb and the plane ve...

    Text Solution

    |

  5. If a line makes an angel of pi/4 with the positive direction of eac...

    Text Solution

    |

  6. The ratio in which the plane vec rdot( vec i-2 vec j+3 vec k)=17 d...

    Text Solution

    |

  7. then image of the point (-1,3,4) in the plane x-2y=0

    Text Solution

    |

  8. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  9. Let L be the line of intersection of the planes 2x+3y+z=1a n dx+3y+2z=...

    Text Solution

    |

  10. The length of the perpendicular drawn from (1,2,3) to the line (x-6...

    Text Solution

    |

  11. If the angle theta between the line (x+1)/1=(y-1)/2=(z-2)/2 and the pl...

    Text Solution

    |

  12. The intersection of the spheres x^2+y^2+z^2+7x-2y-z=13a n dx^2+y^2=...

    Text Solution

    |

  13. If a plane cuts off intercepts OA = a, OB = b, OC = c from the coordi...

    Text Solution

    |

  14. A line makes an angel theta with each of the x-and z-axes. If the a...

    Text Solution

    |

  15. The shortest distance from the plane 12 x+y+3z=327 to the sphere x^...

    Text Solution

    |

  16. A tetrahedron has vertices O(0,0,0),A(1,2,1),B(2,1,3),a n dC(-1,1,2), ...

    Text Solution

    |

  17. The radius of the circle in which the sphere x^(I2)+y^2+z^2+2z-2y-4...

    Text Solution

    |

  18. The lines (x-2)/1=(y-3)/2=(z-4)/(-k)a n d=(x-1)/k=(y-4)/2=(z-5)/1 are ...

    Text Solution

    |

  19. The point of intersection of the lines (x-5)/3=(y-7)/(-1)=(z+2)/1a ...

    Text Solution

    |

  20. Two systems of rectangular axes have the same origin. If a plane cu...

    Text Solution

    |