Home
Class 12
MATHS
Statement 1: let A( vec i+ vec j+ vec k)...

Statement 1: let `A( vec i+ vec j+ vec k)a n dB( vec i- vec j+ vec k)` be two points. Then point `P(2 vec i+3 vec j+ vec k)` lies exterior to the sphere with `A B` as its diameter. Statement 2: If `Aa n dB` are any two points and `P` is a point in space such that ` vec P Adot vec P B >0` , then point `P` lies exterior to the sphere with `A B` as its diameter.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

`vec(PA)*vec(PB)= 9 gt 0`. Therefore, P is exterior to the sphere. Statement 2 is also true (standard result).
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Comprehension)|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the line vec r=( vec i+2 vec j- vec k)+lambda( vec i- vec j+ vec k) and the normal to the plane vec rdot((2 vec i- vec j+ vec k))=4.

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Find lambda if the vectors vec a= vec i+3 vec j+ vec k , vec b= 2 vec i- vec j- vec k and vec c= lambda vec i+7 vec j+ 3 vec k are coplanar

Find a unit vector vec c if vec -i+vec j-vec k bisects the angle between vec c and 3 vec i+4vec j .

Statement 1:Let A( vec a),B( vec b)a n dC( vec c) be three points such that vec a=2 hat i+ hat k , vec b=3 hat i- hat j+3 hat ka n d vec c=- hat i+7 hat j-5 hat kdot Then O A B C is a tetrahedron. Statement 2: Let A( vec a),B( vec b)a n dC( vec c) be three points such that vectors vec a , vec ba n d vec c are non-coplanar. Then O A B C is a tetrahedron where O is the origin.

The position vectors of the vertices of a triangle are vec(i) +2 vec(j) +3 vec(k) , 3 vec(i) -4 vec(j) +5 vec (k) and -2vec (i) +3 vec (j) - 7 vec (k) Find the perimeter of a triangle .

If vec a=2 vec i+3 vec j- vec k , vec b=- vec i+2 vec j-4 vec ka n d vec c= vec i+ vec j+ vec k , then find thevalue of ( vec axx vec b)dot( vec axx vec c)dot

If vec a = hat i + 2 hat j - 3 hat k and vec b = 3 hat i - hat j + 2 hat k , then vec a + vec b and vec a - vec b are

If vec a = hat i - hat j and vec b = hat j + hat k then |vec a xx vec b|^(2) + |vec a. vecb|^(2) is equal to