Let `vecx,vecy and vecz` be three vector each of magnitude `sqrt(2)` and the angle between each pair of them is `(pi)/(3).` if `veca` is a non - zero vector perpendicular to `vecx and vecy xxvecz and vecb` is a non-zero vector perpendicular to `vecy and vecz xx vecx,` then
A
`vecb=(vecb.vecz)(vecz-vecx)`
B
`veca=(veca.vecy)(vecy-vecz)`
C
`veca.vecb=-(veca.vecy)(vecb.vecz)`
D
`veca=(veca.vecy)(vecz-vecy)`
Text Solution
Verified by Experts
The correct Answer is:
A, B, C
a,,b., c. According to the question `vecx.vecz=vecx.vecy=vecy.vecz=sqrt(2).sqrt(2). cos ""(pi)/(3)=1` Given `veca` is perpendicular to `vecx and vecyxxvecz` `therefore veca =lamda_(1)(vecx xx(vecyxx vecz))` `implies veca=lamda_(1) ((vecx.vecz)vecY-(vecx . vecy)vecz)` `implies veca=lamda_(1) (vecy-vecz)` Now` veca. vecy = lamda _(1) ( vecy. vecy- vecy.vecz) = lamda_(1) (2-1) ` ` implies lamda_(1) = veca . vecy` From (1) and (2) , `veca= ( veca. vecy) ( vecy- vexz)` Similarly , ` vecb = ( vecb. vecz)( vecz - vecx) ` Now , `veca. vecb =(vecb. vecz) [ ( vecy-vecz).( vecz- vecx)]` `= ( veca . vecy) (vecb. vecz) [1-1-2+1]` ` =- ( veca. vecy) ( vecb. vecz) `
Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vecc| = sqrt6 , " then " |veca|=
If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then
If veca,vecb and vecc are three unit vectors satisfying veca-vecb-sqrt3 vecc=0 then the angle between veca and vecc is:
If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?
if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .
Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be
Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|
If veca, vecb and vecc are three units vectors equally inclined to each other at an angle alpha . Then the angle between veca and plane of vecb and vecc is
Find the unit vector perpendicular to both vectors 2veci+vecj+2veck and 3veci+4vej+5veck .Find also angle between the given vector.
CENGAGE-JEE 2019-chapter -2 multiple correct answers type