Home
Class 12
MATHS
Let Delta PQR be a triangle Let veca=...

Let `Delta PQR` be a triangle Let `veca=bar(QR),vecb=bar(RP)and vecc=bar(PQ)if |veca|=12,|vecb|=4 sqrt(3)and vecb.vecc=24,`then which of the following is (are ) true ?

A

`(|vecc|^(2))/(2)-|veca|=12`

B

`(|vecc|^(2))/(2)-|veca|=30`

C

`|vecaxxvecb+veccxxveca|=48sqrt(3)`

D

`veca.vecb=-72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`a., c., d. veca+ vecb + vecc=0 `
` implies vecb+ vecc=-veca`
`implies |vecb|+ |vecc|^(2) +2cevb. vecc= |veca|^(2)`
`implies 48+ |vecc|^(2)+48=144`
`implies |vecc|^(2)=48`
`implies |vecc|= 4sqrt(3)`
`therefore ( |vecc|^(2))/(2) +|veca|=36`
futher ,
`veca+vecb=-vecc``implies |veca|^(2)+|vecb|+2veca.vecb=|vecc|^(2)`
` implies 144+48+2veca. vecb=48`
`:' veca+vecb+vecc=0`
`implies veca+vecb +c=0`
` therefore |vecaxxvecb+veccxxveca|`
`2 |vecaxxvecb|`
`= 2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`= 2sqrt((144)(48)-(72)^(2)= 48sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE|Exercise chapter -3 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Integer Answer type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise All Questions|529 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|17 Videos

Similar Questions

Explore conceptually related problems

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

If (veca xx vecb)xx vecc= veca xx (vecb xx vecc) and vecb perpendicular to vecc then which is true ?

If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda veca xx vecb , angle between veca and vecb is 2pi//3,|veca|=sqrt2 |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4 and veca+vecb+vecc=0 find 4veca*vecb+3vecb*vecc+3vecc*veca .

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4, and veca+vecb+vecc=vec0. Find 4veca.vecb+3vecb.vecc+3vecc.veca .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .