Find the possible values of
`sqrt(|x|-2)`
(ii) `sqrt(3-|x-1|)`
(iii) `sqrt(4-sqrt(x^2))`
Text Solution
Verified by Experts
`sqrt(|x|-2)` we know that square roots are defined for non- negative values only . It implies that we must have `|x|-2 le 0 ` Thus `sqrt(|x|-2) ge 0 ` (ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| le 0 ` But the maximum value of 3-|x-1| is 3 , when |x-1| is 0 Hence for `sqrt(3-|x-1|)` to get defined , `0 le 3- |x-1| le 3 ` Thus , `sqrt(3-|x-1|)in [0,sqrt(3)]` Alternatively , `|x-1| ge 0` `rArr -|x-1| le 0 ` `rArr 3-|x-1|le3` But for `sqrt(3-|x-1|)` to get defined ,we must have `0 le 3 -|x-1| le 3 ` `rArr 0 le sqrt(3-|x-1| le sqrt(3)` (iii) `sqrt(4-sqrt(x^2))=sqrt(4-|x|)` `|x| ge 0 ` `rArr - |x| le 0 ` `rArr 4-|x| le 4 ` But for `sqrt(4-|x| )` to get defined `0 le 4 - |x| le 4 ` `therefore 0 le sqrt(4-|x|) le 2 `
Topper's Solved these Questions
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.1|12 Videos
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.2|8 Videos
SEQUENCE AND SERIES
CENGAGE|Exercise Question Bank|1 Videos
SETS AND RELATIONS
CENGAGE|Exercise Question Bank|3 Videos
Similar Questions
Explore conceptually related problems
(1)/(sqrt(x+3)-sqrt(x-4))
Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)
Find all the possible the value of the following expression dot sqrt(x^2-4) (ii) sqrt(9-x^2) (iii) sqrt(x^2-2x+10)
Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1
(sqrt(x)+(1)/(sqrt(x)))^(2)
Find the integrals of the following : 1/(sqrt((2+x)^2-1)) (ii) 1/(sqrt(x^2-4x+5)) (iii) 1/sqrt(9+8x-x^2)
If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)
Find the value of discriminant. sqrt(2)x^(2)+4x+2sqrt(2)=0
Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .
Integrate the following functions with respect to x . (i) sqrt(9-(2x+5)^2) (ii) sqrt(81+(2x+1)^2) (iii) sqrt((x+1)^2-4)
CENGAGE-SET THEORY AND REAL NUMBER SYSTEM -Archieves