Home
Class 12
MATHS
Find the possible values of sqrt(|x|-2) ...

Find the possible values of `sqrt(|x|-2)` (ii) `sqrt(3-|x-1|)` (iii) `sqrt(4-sqrt(x^2))`

Text Solution

Verified by Experts

`sqrt(|x|-2)`
we know that square roots are defined for non- negative values only .
It implies that we must have `|x|-2 le 0 ` Thus
`sqrt(|x|-2) ge 0 `
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| le 0 `
But the maximum value of 3-|x-1| is 3 , when |x-1| is 0
Hence for `sqrt(3-|x-1|)` to get defined , `0 le 3- |x-1| le 3 `
Thus ,
`sqrt(3-|x-1|)in [0,sqrt(3)]`
Alternatively , `|x-1| ge 0`
`rArr -|x-1| le 0 `
`rArr 3-|x-1|le3`
But for `sqrt(3-|x-1|)` to get defined ,we must have `0 le 3 -|x-1| le 3 `
`rArr 0 le sqrt(3-|x-1| le sqrt(3)`
(iii) `sqrt(4-sqrt(x^2))=sqrt(4-|x|)`
`|x| ge 0 `
`rArr - |x| le 0 `
`rArr 4-|x| le 4 `
But for `sqrt(4-|x| )` to get defined `0 le 4 - |x| le 4 `
`therefore 0 le sqrt(4-|x|) le 2 `
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.1|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|1 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(x+3)-sqrt(x-4))

Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)

Find all the possible the value of the following expression dot sqrt(x^2-4) (ii) sqrt(9-x^2) (iii) sqrt(x^2-2x+10)

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

(sqrt(x)+(1)/(sqrt(x)))^(2)

Find the integrals of the following : 1/(sqrt((2+x)^2-1)) (ii) 1/(sqrt(x^2-4x+5)) (iii) 1/sqrt(9+8x-x^2)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

Find the value of discriminant. sqrt(2)x^(2)+4x+2sqrt(2)=0

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

Integrate the following functions with respect to x . (i) sqrt(9-(2x+5)^2) (ii) sqrt(81+(2x+1)^2) (iii) sqrt((x+1)^2-4)