`|2^x-1|+| 4-2^x| lt 3` `2^x-1 = 0 , if x=0` `4-2^x=0 , if x=2` Case (i): `x lt 0 ` `rArr 1-2^x +4- 2^x lt 3 ` `rArr 2 xx 2 ^x lt 3 ` `2 xx 2 ^x lt 2 rArr 2^x gt 1` not possible when `x lt 0 ` Case (ii) : `0 le x lt 2 ` `rArr 2^x -1 + 4 - 2^x lt 3 ` not possible Case (iii) `x ge 2` `rArr 2xx 2 ^x lt 8 ` `rArr 2^x lt 4 ` `rArr x lt 2 ` not possible Alternative Method We have `|2^x-1|+|4-2^x| lt 3 ` But `|(2^x-1) + ( 4-2^x)| le |2^x -1 |+ |4-2^x| lt 3 ` or `3 lt 3 `which is not possible Hence , three is no real solution
Topper's Solved these Questions
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.1|12 Videos
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.2|8 Videos
SEQUENCE AND SERIES
CENGAGE|Exercise Question Bank|1 Videos
SETS AND RELATIONS
CENGAGE|Exercise Question Bank|3 Videos
Similar Questions
Explore conceptually related problems
Solve |x-2|=1
Solve |x|= 2x-1
Solve |x-1|+|x-2|geq4.
Solve |x-1|+|x-2| ge 4
Solve |3x-2|<4.
Solve |x|^(2)-|x|+4=2x^(2)-3|x|+1 .
Solve |x+1|+|2x-3|=4.
Solve |x|=x^2-1.
Solve |(x+2)/(x-1)|=2
CENGAGE-SET THEORY AND REAL NUMBER SYSTEM -Archieves