Home
Class 12
MATHS
Evaluate the left-and right-hand limits ...

Evaluate the left-and right-hand limits of the function defined by `f(x)={1+x^2,if0lt=x<1 2-x ,ifx >1` at `x=1.` Also, show that `("lim")_(xvec1)f(x)` does not exist

Text Solution

Verified by Experts

LHL of `f(x)` at x=1 is
`underset(xto1^(-))limf(x)=underset(hto0)f(1-h)`
`=underset(hto0)lim[1+(1-h)^(2)]`
`=underset(hto0)lim(2-2h+h^(2))=2`
RHL of f(x) at x=1 is
`underset(xto1^(+))limf(x)=underset(hto0)limf(1+h)`
`=underset(hto0)lim[2-(1+h)]`
`underset(hto0)lim(1-h)=1`
Clearly, `underset(xto1^(-))limf(x)neunderset(xto1^(+))f(x)`
So, `underset(xto1)limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

A function is defined by f(x)=2x-3 Find (f(0)+f(1))/(2) .

A function is defined by f(x)=2x-3 Find x such that f(x)=f(1-x) .

Evaluate: ("lim")_(xvec0)(1-cosm x)/(1-cosn x)

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

If A={-2,-1,0,1,2} and f : A->B is an onto function defined by f(x)=x^2+x+1 and find B .

CENGAGE-LIMITS-Question Bank
  1. Evaluate the left-and right-hand limits of the function defined by f(...

    Text Solution

    |

  2. If Lim(x rarr 0) (1-cosx)/(e^(ax)-bx-1) exist and is equal to 1, then ...

    Text Solution

    |

  3. If graph of a function f(x) is shown in the adjacent figure, then Lim(...

    Text Solution

    |

  4. Let f(x) =(sec x)^(cosecx) + (cot x)^(sin x). Then the value of Lim(x ...

    Text Solution

    |

  5. Lim(z rarr 0){{max((sin^(-1)x + cos^(-1)x)^(2), min(x^(2)+4x+7))}. (si...

    Text Solution

    |

  6. The reciprocal of the value of: ("lim")(ntooo)(1-1/(2^2))(1-1/(3^2))(1...

    Text Solution

    |

  7. The value of Lim(x rarr 0)(sum(k =1)^(2016){(sinx)/x+2015k})/2016 is [...

    Text Solution

    |

  8. Lim(x rarr oo) (30+4sqrtx+7root(3)(x))/(2+sqrt(4x-7)+root(3)(6x-2) )eq...

    Text Solution

    |

  9. If Lim(x rarr0) ((a sin x + b tan x)/x^(3))= 3/2 then |a+2b| is equal ...

    Text Solution

    |

  10. lim(n rarr 0)(1/(1+n^(2))+2/(1+n^(2))+3/(1+n^(2))+....+n/(1+n^(2))) is...

    Text Solution

    |

  11. Find the value of lim(n rarr oo)sum(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

    Text Solution

    |

  12. The value of Lim(x rarr 0)((tanx)^(1/x)+(1+sinx)^(x)) where x gt0 is e...

    Text Solution

    |

  13. If Lim(x rarr 0) (a sinx + bxe^(x)+3x^(2))/(sin x-2x+tanx) exists and ...

    Text Solution

    |

  14. If Lim(x rarr a) (sqrt(x-b)-sqrt(a-b))/(x^(2)-a^(2))(a gt b) = 1/64 an...

    Text Solution

    |

  15. If lim(x rarr 0) (k+cos lx)/x^(2)exists and has the value equal to -4 ...

    Text Solution

    |

  16. Lim(x rarr 0)((3sin x- sin 3x)^(4))/((sec x - cosx)^(6)) is equal to

    Text Solution

    |

  17. Lim(x rarr 0)(tanx sqrt (tanx)-sin x sqrt(sinx))/(x^(3).sqrtx) equals

    Text Solution

    |

  18. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))." Then "underset(xtooo)l...

    Text Solution

    |