Home
Class 12
MATHS
If ("lim")(xveca)[f(x)+g(x)]=2a n d ("l...

If `("lim")_(xveca)[f(x)+g(x)]=2a n d` `("lim")_(xveca)[f(x)-g(x)]=1,` then find the value of `("lim")_(xveca)f(x)g(x)dot`

Text Solution

Verified by Experts

`underset(xtoa)lim[f(x)+g(X)]=2`
or ` underset(xtoa)limf(x)+underset(xtoa)limg(x)=2" "(1)`
`underset(xtoa)lim[f(x)-g(x)]=1`
or `underset(xtoa)limf(x)-underset(xtoa)limg(x)=1" "(2)`
Adding (1) and (2),
`2underset(xtoa)limf(x)=3" "or" "underset(xtoa)limf(x)=3/2`
Subtracting (2) from (1),
`2underset(xtoa)limg(x)=1" "`or`" "underset(xtoa)limg(x)=1/2`
or `" "underset(xtoa)limf(x)g(x)=underset(xtoa)limf(x)underset(xtoa)limg(x)=3/2xx1/2=3/4`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If ("lim")_(xvec0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(("lim")_(xvec0)[1+(f(x))/x]^(1/x))i s____

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

Given ("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest integer function, then (a) ("lim")_(xvec0)[f(x)]=0 (b) ("lim")_(xvec0)[f(x)]=1 (c) ("lim")_(xvec0)[(f(x))/x] does not exist (d) ("lim")_(xvec0)[(f(x))/x] exists

If (lim)_(xvec0)(f(x))/(x^2)-aa n d(lim)_(xvec0)(f(1-cosx))/(g(x)sin^2x)=b(w h e r eb!=0)dot then (lim)_(xvec0)(g(1-cos2x))/(x^4) is (4a)/b b. a/(4b) c. a/b d. none of these

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If ("lim")_(xtoa)[f(x)g(x)] exists, then both ("lim")_(xtoa)f(x)a n d("lim")_(xtoa)g(x) exist.

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (a) ("lim")_(xvec5)f(x)=1 (b) ("lim")_(xvec5)f(x)=0 (c) ("lim")_(xvec5)f(x)does not exist (d)none of these

CENGAGE-LIMITS-Question Bank
  1. If ("lim")(xveca)[f(x)+g(x)]=2a n d ("lim")(xveca)[f(x)-g(x)]=1, then...

    Text Solution

    |

  2. If Lim(x rarr 0) (1-cosx)/(e^(ax)-bx-1) exist and is equal to 1, then ...

    Text Solution

    |

  3. If graph of a function f(x) is shown in the adjacent figure, then Lim(...

    Text Solution

    |

  4. Let f(x) =(sec x)^(cosecx) + (cot x)^(sin x). Then the value of Lim(x ...

    Text Solution

    |

  5. Lim(z rarr 0){{max((sin^(-1)x + cos^(-1)x)^(2), min(x^(2)+4x+7))}. (si...

    Text Solution

    |

  6. The reciprocal of the value of: ("lim")(ntooo)(1-1/(2^2))(1-1/(3^2))(1...

    Text Solution

    |

  7. The value of Lim(x rarr 0)(sum(k =1)^(2016){(sinx)/x+2015k})/2016 is [...

    Text Solution

    |

  8. Lim(x rarr oo) (30+4sqrtx+7root(3)(x))/(2+sqrt(4x-7)+root(3)(6x-2) )eq...

    Text Solution

    |

  9. If Lim(x rarr0) ((a sin x + b tan x)/x^(3))= 3/2 then |a+2b| is equal ...

    Text Solution

    |

  10. lim(n rarr 0)(1/(1+n^(2))+2/(1+n^(2))+3/(1+n^(2))+....+n/(1+n^(2))) is...

    Text Solution

    |

  11. Find the value of lim(n rarr oo)sum(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

    Text Solution

    |

  12. The value of Lim(x rarr 0)((tanx)^(1/x)+(1+sinx)^(x)) where x gt0 is e...

    Text Solution

    |

  13. If Lim(x rarr 0) (a sinx + bxe^(x)+3x^(2))/(sin x-2x+tanx) exists and ...

    Text Solution

    |

  14. If Lim(x rarr a) (sqrt(x-b)-sqrt(a-b))/(x^(2)-a^(2))(a gt b) = 1/64 an...

    Text Solution

    |

  15. If lim(x rarr 0) (k+cos lx)/x^(2)exists and has the value equal to -4 ...

    Text Solution

    |

  16. Lim(x rarr 0)((3sin x- sin 3x)^(4))/((sec x - cosx)^(6)) is equal to

    Text Solution

    |

  17. Lim(x rarr 0)(tanx sqrt (tanx)-sin x sqrt(sinx))/(x^(3).sqrtx) equals

    Text Solution

    |

  18. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))." Then "underset(xtooo)l...

    Text Solution

    |