Home
Class 12
MATHS
ABC is an isosceles triangle inscribed i...

ABC is an isosceles triangle inscribed in a circle of radius `rdot` If `A B=A C` and `h` is the altitude from `A` to `B C ,` then triangle `A B C` has perimeter `P=2(sqrt(2h r-h^2)+sqrt(2h r))` and area A= ____________ and also `("lim")_(h->0)A/(P^3)=______`

Text Solution

Verified by Experts

In `DeltaABC, AB=AC, AD_|_BC(D" is midpoint of "BC)`

Let r= radius of circumcircle
`:." "OA=OB=OC=r`
Now `BD=sqrt(BO^(2)-OD^(2))=sqrt(r^(2)-(h-r)^(2))=sqrt(2rh-h^(2))`
`:." "BC=2sqrt(2rh-h^(2))`
Also` AB^(2)=BD^(2)+AD^(2)=2hr-h^(2)+h^(2)=2hr`.
`:." "AB=AC=sqrt(2hr)`
`:." ""Perimeter",P=2sqrt(2rh-h^(2))+2sqrt(2hr)`
`:." ""Area of "DeltaABC=(1)/(2)xxBCxxAD=hsqrt(2rh-h^(2))`
So,`" "underset(hto0)lim(A)/(P^(3))=(hsqrt(2rh-h^(2)))/(8(sqrt(2rh-h^(2))+sqrt(2hr))^(3))`
`=underset(hto0)lim(h^(3//2)sqrt(2r-h))/(8h^(3//2(sqrt(2r-h)+sqrt(2r))^(3)))`
`=underset(hto0)lim(sqrt(2r-h))/(8[sqrt(2r-h)+sqrt(2r)]^(3))`
`=(sqrt(2r))/(8(sqrt(2r)+sqrt(2r))^(3))=(1)/(128r)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is 6sqrt3r .

The largest area of the trapezium inscribed in a semi-circle or radius R , if the lower base is on the diameter, is (a) (3sqrt(3))/4R^2 (b) (sqrt(3))/2R^2 (c) (3sqrt(3))/8R^2 (d) R^2

In A B C ,A(z_1),B(z_2),a n dC(z_3) are inscribed in the circle |z|=5. If H(z_n) be the orthocenrter of triangle A B C , then find z_ndot

A B C is an equilateral triangle of side 4c mdot If R ,ra n dh are the circumradius, inradius, and altitude, respectively, then (R+h)/h is equal to 4 (b) 2 (c) 1 (d) 3

In a right angled DeltaABC,angleACB=90^(@). A circle is inscribed in the triangle with radius r, a, b, c are the lengths of the sides BC, AC and AB respectively. Prove that 2r=a+b-c.

A right-angled triangle A B C is inscribed in parabola y^2=4x , where A is the vertex of the parabola and /_B A C=pi/2dot If A B=sqrt(5), then find the area of A B Cdot

In a triangle ABC if 2a=sqrt(3)b+c , then possible relation is

If P is a point on the altitude AD of the triangle ABC such the /_C B P=B/3, then AP is equal to 2asinC/3 (b) 2bsinC/3 2csinB/3 (d) 2csinC/3

If A(1,p^2),B(0,1) and C(p ,0) are the coordinates of three points, then the value of p for which the area of triangle A B C is the minimum is 1/(sqrt(3)) (b) -1/(sqrt(3)) 1/(sqrt(2)) (d) none of these

CENGAGE-LIMITS-Question Bank
  1. ABC is an isosceles triangle inscribed in a circle of radius rdot If A...

    Text Solution

    |

  2. If Lim(x rarr 0) (1-cosx)/(e^(ax)-bx-1) exist and is equal to 1, then ...

    Text Solution

    |

  3. If graph of a function f(x) is shown in the adjacent figure, then Lim(...

    Text Solution

    |

  4. Let f(x) =(sec x)^(cosecx) + (cot x)^(sin x). Then the value of Lim(x ...

    Text Solution

    |

  5. Lim(z rarr 0){{max((sin^(-1)x + cos^(-1)x)^(2), min(x^(2)+4x+7))}. (si...

    Text Solution

    |

  6. The reciprocal of the value of: ("lim")(ntooo)(1-1/(2^2))(1-1/(3^2))(1...

    Text Solution

    |

  7. The value of Lim(x rarr 0)(sum(k =1)^(2016){(sinx)/x+2015k})/2016 is [...

    Text Solution

    |

  8. Lim(x rarr oo) (30+4sqrtx+7root(3)(x))/(2+sqrt(4x-7)+root(3)(6x-2) )eq...

    Text Solution

    |

  9. If Lim(x rarr0) ((a sin x + b tan x)/x^(3))= 3/2 then |a+2b| is equal ...

    Text Solution

    |

  10. lim(n rarr 0)(1/(1+n^(2))+2/(1+n^(2))+3/(1+n^(2))+....+n/(1+n^(2))) is...

    Text Solution

    |

  11. Find the value of lim(n rarr oo)sum(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

    Text Solution

    |

  12. The value of Lim(x rarr 0)((tanx)^(1/x)+(1+sinx)^(x)) where x gt0 is e...

    Text Solution

    |

  13. If Lim(x rarr 0) (a sinx + bxe^(x)+3x^(2))/(sin x-2x+tanx) exists and ...

    Text Solution

    |

  14. If Lim(x rarr a) (sqrt(x-b)-sqrt(a-b))/(x^(2)-a^(2))(a gt b) = 1/64 an...

    Text Solution

    |

  15. If lim(x rarr 0) (k+cos lx)/x^(2)exists and has the value equal to -4 ...

    Text Solution

    |

  16. Lim(x rarr 0)((3sin x- sin 3x)^(4))/((sec x - cosx)^(6)) is equal to

    Text Solution

    |

  17. Lim(x rarr 0)(tanx sqrt (tanx)-sin x sqrt(sinx))/(x^(3).sqrtx) equals

    Text Solution

    |

  18. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x)))." Then "underset(xtooo)l...

    Text Solution

    |