Home
Class 12
MATHS
Evaluate lim(ntooo) cos(pisqrt(n^(2)+n))...

Evaluate `lim_(ntooo) cos(pisqrt(n^(2)+n))` when n is an integer.

Text Solution

Verified by Experts

The correct Answer is:
0

`L=underset(ntooo)limcos(pisqrt(n^(2)+n))`
`=underset(ntooo)lim(-1)^(n)cos(npi-pisqrt(n^(2)+n))`
`=underset(ntooo)lim(-1)^(n)cos(pi(n-sqrt(n^(2)+n)))`
`=(-1)^(n)underset(ntooo)limcos((-npi)/(n+sqrt(n^(2)+n)))`
`=(-1)^(n)underset(ntooo)limcos((pi)/(1+sqrt(1+(1)/(n))))`
`=(-1)^(n)"cos"(pi)/(2)`
=0
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

Evaluate: ("lim")_(ntooo)(n^p sin^2 (n !))/(n+1)

Evaluate: (lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Evaluate: lim_(n to infty) (n!)/((n+1)!-n!)

Evaluate lim_(ntooo) [(1+2+3+...+n)/(5n^2+2n+1)]

Evaluate lim_(ntooo) [(1+2+3+...+n)/(4n^2-3n+2)]

The value of lim_(ntooo) [1/n+2] is

Evaluate: ("lim")_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)),w h e r en in N

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n